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ABSTRACT: We use the holomorphic anomaly equation to solve the gravitational corrections
to Seiberg-Witten theory and a two-cut matrix model, which is related by the Dijkgraaf-
Vafa conjecture to the topological B-model on a local Calabi-Yau manifold. In both cases
we construct propagators that give a recursive solution in the genus modulo a holomor-
phic ambiguity. In the case of Seiberg-Witten theory the gravitational corrections can be
calculated to all genus as quasimodular functions of I'(2). In the matrix model we fix the
holomorphic ambiguity up to genus two. The latter result establishes the Dijkgraaf-Vafa
conjecture at that genus and yields a new method for solving the matrix model at fixed

genus in closed form in terms of generalized hypergeometric functions.
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1. Introduction

The holomorphic anomaly equations, discovered in [[]] in a world-sheet analysis of a topo-
logical twisted o-model known as B-model, are a generalization of Quillens anomaly to
higher genus and more general world-sheet theories. Gauge theory is embedded in string
theory and in the context of N = 2 geometric engineering the former can be obtained in
a double scaling decoupling limit of the string theory. The holomorphic anomaly equa-
tions commute with the decoupling limit and the recursive procedure which determines the
higher F(9) (1,7) can be build up entirely from gauge theory quantities. The F(9) (1,7)
describe certain gravitational couplings to the gauge theory.

In section J the corresponding topological partition of the 4d N = 2 SUSY gauge is
determined by integrating the holomorphic anomaly recursively, up to finitely many data,
which have to be fixed by analyzing the boundary behavior of the F(9) (1,7). The properties
of F9) (1,7) are to a large extend determined by the modular group of the corresponding
Seiberg-Witten curve and we are able to write them as global expressions in terms of



“almost holomorphic” modular functions of this group. Various holomorphic limits are
readily taken from our expressions and provide conjectural solutions to the unitary matrix
model [{].

Riemann surfaces 3, of all genera can be embedded in noncompact Calabi-Yau three-
folds X, i.e. the local limit of the B-model exist for an arbitrary Riemann surface. There
are choices in this embedding, which affect the reduction of the holomorphic (3,0) form
from X to a one form A on ¥, which is a key datum of the local B-model limit. Except
for the product case, A will be a meromorphic form with residua on the punctures of a
Riemann surface X, j,. In the pure SW-case, one has poles with vanishing residua. In the
massive SW-case and other local geometries, one has further mass parameters associated
with the non-vanishing residua.

In section f| we apply the holomorphic anomaly equations to N = 1 4d gauge theory in a
geometry proposed by [[]. This is a case where A has essential singularities or differently put
one deals with open Riemann surfaces. According to the Dijkgraaf-Vafa correspondence [H]
the holomorphic anomaly equations provide here in a particular region solutions to the large
N expansion of a complex matrix model, which is the solution to an open string problem.
This has a description in the A and the B language as summarized following commuting

diagram of duality relations

open topological string with jarge N-duality | closed topological A-mode
3d Lagrangian cycles ——> | on blown up geometry with
— 3d Chern Simons theongeometric transitigneven form R flux

mirror mirrqr
duality duality

holomorphic Chern-Simons large N—-duality | closed topological B-mods
th. reduced on holom. curves <«———> on deformed geometry wit
- matrix model geometric transition odd form R flux

The Dijkgraaf-Vafa conjecture, relevant to calculate effective terms in NV = 1 supersym-
metric theories in 4d, involves non-compact Calabi-Yau geometries, which are in particular
not toric. Explicit test of the conjecture are therefore difficult and have been done only at
tree level [f] and at genus one [}, [[(]. In the genus one case it is found that the free energy
for multi-cut matrix models can be written in closed form [§, [Ll]]. We set the B-model for-
malism up to get recursively closed expressions at all genus and check the Dijkgraaf-Vafa
correspondence of the first non-trivial example, the two cut case, explicitly at genus two.
As in the N = 2 case, we make a detailed analysis of the moduli space and the modular
transformation of the periods in appendix [A], which enables us to solve the theory at various
regions in the moduli space. Different from in the N = 2 case however there is a divisor
with essential singularities of the periods in the moduli space, where the perturbative



description breaks down. From the topological string point of view we obtain solutions
for a new class of non-toric, non-compact Calabi-Yau geometries, which have no point of
maximal unipotent monodromy.

2. Gravitational corrections to N=2 Seiberg-Witten Gauge theory

In this section we introduce a B-model, which calculates the higher genus space-time in-
stantons of N = 2 Seiberg-Witten gauge theory. The genus g generating function F (9)(a)
of these space-time instantons describe gravitational couplings to the gauge theory [[4].
The coefficients of -
F =Y N92F9)(a) (2.1)
g=0
can be calculated iteratively in the instanton number, 1/a* powers below, using localization
in the moduli space of gauge theory [, [Ld, [[§, [(7] or worldsheet instantons [}, §]. Global
properties under the monodromy group, which should be central in the solution of the
theory, remain obscure in these approaches. We find that studying the global properties
enables us to solve the B-model completely and in particular fix the holomorphic ambiguity.
This yields closed modular expressions which determine the instanton contributions to all
orders in the instanton number, but are iteratively in the genus i.e. in A\. We finish the
section with some speculations how to obtain closed expressions in A as well.

2.1 Modular properties of the genus zero and genus one sector

We focus on simplest case of SU(2) gauge theory without matter. Generalizations to other
gauge groups and matter spectra with asymptotic freedom are certainly possible. The
monodromy group of pure SU(2) Seiberg-Witten theory is T'(2) € 'y = SL(2,7Z) generated

by (L]

My, =PT™%  M; =ST?S, (2.2)

0 -1
1 0
modular properties as well as the B-model holomorphic anomaly we are able to express
the F9) in terms of I'(2) forms and the quasi-modular form of weight two Es, see (2:23)
for our conventions.

11 -1
where S = ( ) and T' = 01 are the generators of I'g and P = ( 0 (1)> Using

The natural embedding of gauge theory in type IIB string theory [] is the physical
explanation that the higher genus worldsheet technique of [] applies to the gauge theory
space-time instanton calculation. More precisely as found in [B(] IIB theory on the local
Calabi-Yau space O(—2, —2) — P! x P! has a double scaling limit in the two complexified
Kihler parameters t1,ty of P! x P! in which F)(t,,t,) approaches F)(a). What we
find below is that the holomorphic anomaly equation make sense in the limit and can be
directly viewed as a property of the gauge theory.

The Picard-Fuchs equation for the periods a = fa)\ and ap = fb)\ of the elliptic

curve [[I]]
y? = (x—u)(x—AZ)(x—FAZ) (2.3)



%ydx

with meromorphic differential A =

z2—1
0%a B a (2.4)
0?u  4(1 —u?) '
allows to calculate the genus zero prepotential using the relation 3520) = ap up an irrel-

evant constant. Below we set the Seiberg-Witten scale A = 1 for convenience. The scale
dependence can be easily recovered by dimensional analysis. The details of the calcula-

tion that leads to explicit expressions for the periods can be found! in [R1]. The elliptic
(3+u?)®

T WI=1) which allows to

curve (R.3) with I'(2) monodromy has the j-function j(r) =

write [2J]

u(r) = & Jbr d (2.5)

as the Hauptmodul of I'(2) in terms of the ratio 7 = [, dgx/ " %“” = —ﬁazféo) of the

periods over the holomorphic one-form. The latter are solutions of the o F hypergeometric

a _ _2u
2u T (1—u?
to (R.§) can be written in terms of a Schwarz-triangle function (see e.g. [BJ])

differential equation )% + 4(1fu2), which implies that the inverse relation

1 i(1—u2)ioF (3,111 —w?
T(u2) _ 8(—, —,1;11,2) — Z( U .)4 2 1(4 4 U ) ) (26)
4 2(1_1) QFI(ia%al; 1_1u2)

We defined in () b = 03, ¢ = 03, d = 0, where 6 are the Jacobi f-functions and the
Jacobi relation reads b 4+ d = ¢. Using the modular transformation

b b b — —72d
s
T: S:d— —12b (2.7)
c—d 9
c — —T“c

and (2.9) it follows immediately that u(7) is invariant under I'(2). For further reference
let us note that the discriminant of the elliptic curve is given by u = co and

A:u2—1:42—g:0. (2.8)
The Kiihler potential in rigid special geometry is given by (see [24] for a recent review)
K=iX'F; - X'F)) . (2.9)

For the Seiberg-Witten curve X! = @ and 7 := gTQaF so that the metric becomes
Gaa = 0u0zK = 273 . (2.10)

The genus one amplitude is obtained by integrating the genus holomorphic anomaly using

the special geometry relation R3]

FU = —log(y/72m) - (2.11)

iv26,.2dz
o= 2x Y

n [@] the isogenous curve y*> = (z° — @)? — A* with the meromorphic differential A = is
used. This means that a5V = ¥, o3V = ¥ /2, 78V = 75T /2 and the monodromy is I'g(4) instead

of I'(2).



Note that the holomorphic ambiguity is fixed by requiring that F(!) is invariant under
SL(2,Z) transformations and regular inside the fundamental domain H. Indeed 7 is the
unique modular form of weight % so that F(1) is regular inside H.

In the holomorphic limit? 7 — oo, we get [R5

1 da 1
M= _ =—-log( = ) — = log(u® - 1) . 2.12
F og(n(r)) = —3 log <au> 75 log(u” — 1) (2.12)
This the first equality agrees with the result in [[4]. The form of F() in terms of u and %
follows in the rigid limit from [R5 and was observed in [§. Using (2.12) and n'? = 2~ *bcd
one gets

da 63
— == 2.13
ou 4 (2.13)
Further with (2.5) and the formulas for the derivatives of the 6 functions we find
3 F () b1 ’
ROy P00 i1 (00 r
’ Pa da  cd A \Jda

This can alternatively derived by taking twice the derivative w.r.t. to a in the Matone
relation F(©) — %aagéo) +u =0 [R9]. Using the Picard-Fuchs (2.4) equation and (2.13) we
can write the period as?

alr) = 3%%(]52 +e+d). (2.15)

Closely related expressions for the SW-periods of elliptic curves appear in [[[4] and for more
general gauge groups in [27].

The weak-strong coupling duality element S : 7 — —% of N = 4 Super-Yang-Mills
theory is not trivially realized in pure N = 2 Seiberg-Witten theory. It relates the gauge
instanton expansion in the region of asymptotic freedom %,% — 0 to the magnetic U(1)
which is weakly coupled at the magnetic monopole point z = (v — 1)/2,ap — 0. The
gauge coupling of the asymptotic free theory is determined by 7(a), while the one of the
magnetic U(1) is determined by 7p(ap) with the relation

™ =— (2.16)

-
We note that the one-loop amplitude (R.11]) is S-duality invariant. The holomorphic
limit at the monopole points is taken by 7p — oco. Therefore one has

FPW(ap) = —log(n(rp)) = — = log (8—5) — Liogu? - 1)

, 2 T\ o 2 » (2.17)
_log(2) i log(ap) ap 3ap 19ayp + O@ap)!
T3 6712 25 20 9123 “p

2Because of the volume of the diffeomorphism group generated by the Killing vector field on T2 we need
regularization of an infinite constant in that limit. Only the immediately well-defined 8, F® plays a role
in the following. To define that limit consider 7 and 7 as independent variables.

3To keep the notation simpler we suppress normalization factors of %m from the periods, which make
them an integral representation of (@)



We derive, similar as (R.1§) was obtained, from the first line of (R.17) a formula for the
second period .
i
_@
This can then be inverted to obtain the series expansion in the second line of (R.17), where

ap(tp) = (Ba—b—c). (2.18)

we rescale

ip = Z%D . (2.19)

It is naturally to define an anholomorphic period
—(By(7,7) + ¢+ d), (2.20)

with the anholomorphic weight one form

. 67

Ey(1,7) := Eo(1) + (2.21)

T(T—71)
Different then the Eisenstein series £4 and Eg, holomorphic modular forms of weight 4 and
6 which generate the ring of holomorphic forms of I'y, the holomorphic Fy transforms not
quite as modular form of weight 1, but rather quasi-modular under Iy, i.e. with a shift

at +b 9 12
E = E — . 2.22
5 <c7'+d> (et + d)*Eq(1) + 2m,c(c7'+d) ( )

However the anholomorphic piece in (.2() cancels the shift so that E, (7,7) transforms as
a form of weight 2.

It follows from (R.2d) that a(r) = lims_oA(7,7) and ap(rp) =
L A(-L,—2L). Moreover S-duality transformations (B.7) allow us to write a
D D D
and ap as functions of 7 or 7p. In particular we can integrate (R.15) w.r.t. ap in the

limz, o0

magnetic phase to obtain

1. ap B 3ap? a3, 5aYf 11ad .
FPO) = §a2D log <—7> +4ap — 5 + 2—? + 2—9D + 212D +0(a%) . (2.23)

2.2 Propagators and integrating the holomorphic anomaly equations

From the genus zero and genus one amplitude one can derive the propagator [fl]. With the
simplification for local B-model explained in [Rg] we obtain

gu_g M1 (1) — = L bo(r,7) (2.24)
=5= = — T)— — | = —Es(7, T .
FO 24\ T 24 2\
which in the holomorphic limit becomes
S0 =8 = 27 1 E (2.25)
= = f(o) = 24 2(7’) . .
3

This quantity contains the contribution from the boundaries of the WS moduli space in the
topological string theory. It is closely related to T}, ; the quantity that arises if one considers



correlators of integrated two-form operators constructed from the descent equation in the
gauge theory on four manifolds. More precisely intersections of the corresponding 2-cycles
require contact terms which are T}, ; = S%% %%‘:g—:j, see [2§].

Equations (R.14)), (R.11), (R.24) define the data needed to recursively solve the B-model

recursively [[l]. Using the fact that the formalism of integrating the holomorphic anomaly

equations commutes with the double scaling limit taken to obtain the gauge theory [R(]
and power counting in the propagator in the Feynmann rules of [[l]] we obtain the following

general result
31 @
FO(r,7) = X971 Y ES(r, 7)) (7) . (2.26)
k=0
Here we defined X = 17281762 7 = 108(u21_1)2b3, which transforms as a weight —6 object
X (Z::g) — X(7) under I'(2). F9) is invariant under I'(2), which implies that c,(cg)
(9)
k

(C’Tid)e
are homogeneous of weight 6(¢g — 1) — 2k in (b, ¢, d). Further conditions on ¢;”’ come from
regularity of F'(9) (t,t) at u = 0 and a gap condition at the conifold u = 1 as dicussed below.

We obtain the holomorphic limits of the expansion in the asymptotic freedom and the

strong coupling region as

FO (@) = lim FO(r,7), and FPW(ap)= lim F<g><—i,—i> (2.27)

T—00 Tp—00 D ’7_'D

and the a or ap (@p) expansion are obtained by inverting (R.1§) or (B.1§). We note that
the leading behavior of electric and magnetic expansion in these parameters is

(—1)9329

BQQ
" 9(29 — 2)(20)%92

~29—2
29(2g — 2)ayy

Fl9)(a) and FPW(ap) ~ (2.28)
respectively. The first asymptotic behavior can be derived in the gauge theory limit of

type II theory on O(—2,—2) — P! x P1. More precisely one uses in the Gopakumar-Vafa

. 1 _ 29—2 -1)_ B> 2g—2 ST (9 _
expansion Ganm) > g=0 A (-1)l )Wimm 97% and the multiplicity n,,( =
04,00m,0 = —2 of BPS states corresponding to constant maps on one P! as well as properties

of the limit discussed in [R(]. The derivation is similar as for the constant map contribution
fM_q 03—1 = % in [BY|. The asymptotic in the magnetic expansion comes from
the occurrence of the ¢ = 1 string at the conifold [A(].
We come now to the explicite iterative solutions in the genus. For example the recursive
definition of F® is
FO (7 7) = %SF,(QU+%5(F,(11))2+%S3(F,%0))2—%523(40)—%SQEgl)Ego)JFXCéQ) (), (2.29)

(2)

where ¢’ (u) is the holomorphic ambiguity at genus two. This ambiguity must be invariant
under I'(2), which implies that it can be written in terms of u. Moreover regularity of F(9)
at u — oo and the leading pole behavior at v — 1 implies that it is of the form

1.(9) 3 A
X9~ =u>9 L 2.
¢y (u) =u ;1 A () (2.30)



Note that Agg ) are undetermined constants and the right hand is a rational function of the
I'(2) invariant function u. Using (2.14)), (R.11)) and the standard formulas for the derivatives
of 6;, E; we may write (2.29) with h = (b + 2d) as

X

FO(r,7) = 5 < E3 —9E2h + 6FEy(b* + cd) —

h(16b% + 19cd)> , (2.31)

10

an almost holomorphic modular function of I'(2). Here we determined the ambiguity as
follows. Using (£.27), (B-1§) we can expand (2.31)) in the electric and magnetic holomorphic

limits. With the leading behavior (2.2§) we found AgQ) = _1219960 and AgQ) = —&. This
yields
1 11 117 171201 1
2) _
F = 9402402 218,410 922,14 934,418 O(ﬁ) (2.32)

This series predicts all genus 2 instantons and checks with the coefficients that appear in

the literature [[3, §. The expansion in ap is obtained from (R.31)) using (.27), (R.7), .19)

1 a 13a%, 12943
A 2% 229D 4 oah) (2.33)

Fb@) — _ _ b
240a2, 213 216 2175

Solving the recursion for genus 3 yields [2q]

1 1 1 1
B — SF,(12)F(11) . §S2E(12)E%0) + §SF,(22) + 6S:s(E(ll)):sFéo) . §SQE(21)(E(11))2

1 1 0 1 1 0 1) (1) 0 1 1) (1
—554(17(1 WEP? + ZS3(Ff1 WEY + s3FY FVED - 55232 e

1 1 5 1), (0 2 1) 2(0) 4(0) D 1)/ (0
_152(F’(2))2 + §55F7(1)(F’(3))3 _ §S4F7(1)F7E1)F7(3) _ §S4E(2)(F:%))2

1 1 1
+ZS3E(21)EE10) + —152 SPEYFY + gs?»gg%gw - g521~j(41) - _4;s4pg°>gg°>

+%SSE§0>(E§9>)2 — 25~ %S“(Fﬁf’f + 4_1853F,(60) + X% (w), (2.34)

: comte AB) 59 (3) _ 14669 (3) _ _4133
and we determined the coefficients A}” = spes, Ay = 5560900 A3 = o059 and

Af) = 332?20. This yields the following almost complex modular expression for F()

. A . 1~
F®) = 4x? <5E§ — 25E5h 4 40F3(2b? + 5cd) — §E§h(529b2 + 559¢d) (2.35)

E?2 E
+?2(1172b4 + 4060b%cd 4 1223(cd)?) — ?211(8441;4 + 1685b%cd 4 310(cd)?)

1
+m(10718b6 + 49596b* cd + 440076 (cd)? + 944(cd)3)> ,

from which the electric

1 1 441 18459 62106849 256368735 1
3) _
F = 1008 - 23 <_g 212,12 T 916,16 928,20 931,24 O<ﬁ>> (2.36)
and magnetic expansions
1 1 9ap 143a3 6382743
D(3) — — _Z2°D D _ D it 2.37
d 1008ah, 20 2% 2277 (@) (2:37)



follow from (2:27). The number of terms in the modular expressions of F(9) grow much
slower then the number of graphs in the holomorphic anomaly equation, because many
graph contributions are proportional to the same quasimodular form. For genus four,
where the holomorphic anomaly equation has 83 graphs we find

1150 - . ,
FW = 4X3{TE§ — 985ESh + 2E3(2399b% 4 7001c¢d) (2.38)

—%ESh(?;?Gle + 6125¢d) + §E§(85863b4 + 363344b% cd 4 240083 (cd)?)
—%Egh(604469b4 + 16773400 cd + 547811 (cd)?)

+§E§’(531266b6 + 2793615b% cd + 32851230 2d? + 447656(cd)?))
—%E%h(4430756b6 + 16550337b% cd + 119259276 (cd)? + 889964 (cd)?)
+%EQ(31232428138 + 19527484005 cd + 329613819b (cd)?
+1307299600? (cd)® +3566728(cd)*) — % h(87826748b° +423770948b5 cd

+5113136010" (cd)? + 128098172b° (cd)® + 4442006(cd)4)}

with electric

) _ 1 1 765 126195 1925006715 14420664765 o 1
F == 1440 - 25 \ ¢6 + 912,14 + 216,18 + 929,22 + 932,26 430
(2.39)
and magnetic expansion
1 1125 a 3915a%, 4786021 a3
D(4) __ D D D ~4
Fo = T, T s g o) (2.40)

We derived expressions for F(9) in terms of modular forms up to genus six and checked

the large a expansions against results made available to us by Nakajima.*

Let us report
here the dual expansions, which are interesting as they correspond to perturbations of the

c = 1 string at the selfdual radius by momentum operators

1 TN75ap  1009714a3, 51425582138
D(5) _ _ D D _ D 4 Ot 2.41
d 1056 5, 236 232 om T Oln), (241)
691  18753525ap 16908525a3, 672990085791a%,
FDE) — _ - - D _ D ro(ap) . (242
327600 a0 214 210 sy TOWp) - (242)

2.3 Fixing the ambiguity

In (£.20) all cég ) except for c(()g ), the holomorphic ambiguity, are determined by the recursion
relations (2.29), (B-34) that follow from the holomorphic anomaly equation in terms of
lower genus F' ), Generally fixing the holomorphic ambiguity is a major problem in the

4These somewhat lengthy expressions are available on request.



B-model, which however the case at hand is completely solvable. The discriminant locus of
the curve (R.J) is at u = oo and at u = +1 where (.3) develops a node. At all other points
in the moduli space of the Seiberg-Witten geometry F9) must be regular. As follows from
the global properties of the 6 functions and Es, regularity at u = 0 restricts the form of
clgg) (1) to

(9) _ , Qt(DIth)

o =hT 2 Py (b*cd), (2.43)

where Pd(gk)(bz, cd) is an homogeneous polynomial in b, ¢, d of degree

(1+ (1))
2 )
(9)

with M + 1 coefficients. In particular in the ambiguity c¢;”’ the number of unknown

coefficients of this polynomial grows with ~ % g slower then the number of the Agg ) in (R.30),

(g, k) =3(g— 1) — k — (2.44)

which grows with ~ 2g.
Moreover the leading terms in (R.33), (R.37), (R.4(), (R.41)), (R.42) correspond to cor-
relators of the cosmological constant operator of the ¢ = 1 matrix model in the genus g

vacuum sector [[i(]. Very important is the occurrence of the gap in F @D j.e. the absence
of terms %, k=0,...,29g — 3. The 29 — 2 gap conditions fix the Agg), i=1,...,2g — 2
constants and hence the ambiguity (.30). Together with the anomaly equation this pro-
vides a very efficient way to solve the theory completely. The asymptotic (R.2§) and the
particular form of (2.43) are further consistency constraints confirming the gap property.
A gap follows if there is a matrix model % expansion for the holomorphic topological string
at a critical point, as e.g. at the orbifold point in the local O(—2,—2) — P! x P! model
discussed [[i]. In this case the measure integration yields at each genus the negative power
term in expansion parameter and the perturbative terms start with positive powers. This
particular behavior of the magnetic expansion of the N=2 pure SU(2) model at the conifold
is hence explainable by the proposed unitary matrix model [[J]. As we saw above the model
is solved by the gap property and the holomorphic anomaly. If one would like to employ %
techniques in order to determine the weak coupling instanton expansion one would have to
do exactly what we have done in (2.26) namely to write the result globally. More generally
the gap can be understood from the absence of correlators of the ground ring operators [B(|
in the ¢ = 1 string describing the limit of the topological string near the nodal singularity
(conifolds) of local models. Indeed we have checked that the gap occurs also at the conifold
in the local O(—3) — P? geometry and fixes the ambiguity of this model. How this extends
generally to singularities of local models and the modifications for singularities of global
models will be discussed in [pI]].

If we absorb X into genus expansion parameter A in (R.2q), then (R.1) becomes a sum of
a quasi-modular forms. The simplest example of such an expansion, where the coefficients
are however quasi modular forms of the full modular group I'g appears in Hurwitz theory
on T? [BJ]. As reviewed there this leads directly to combinatorial problem that is solved

F can be written in a product form that has been recognized

by free fermions and Z = e
as a generalized f-function product form in [B3]. More examples of such product forms

are provided by vertex algebras [B4, Bj] and arise in heterotic type II duality [B6-B9. It

,10,



would be interesting to see whether the SW partition function is related to a generalized
I'(2) theta function.

3. Dijkgraaf-Vafa conjecture

In [f], Dijkgraaf and Vafa proposed a remarkable relation between B-model topological
string on a non-compact Calabi-Yau geometry and a matrix model.

3.1 Dijkgraaf-Vafa transition and geometric engineering

The n cut matrix model is obtained by reducing holomorphic Chern-Simons theory on D5-
branes wrapping n PY’s in a modification of the geometry O(—2) @ O(0) — P!. The k-th
P! is wrapped by N} branes, k = 1,...,n. In the modified geometry the location of the
PY’s in the originally flat O(0) z-direction is now fixed at the minima of a potential W (z)
of degree n + 1. e.g. the n = 1 geometry is the blown up conifold O(—1) & O(-1) — P
The reduction yields a complex bosonic matrix model with the matrix potential® W'(z),
that needs as additional data the choice of contour for the eigenvalue integration [f].

The B-model geometry emerges after a transitions in which the n P!’s are blown down
and deformed to S3’s. It has a local description as a hypersurface in C*

vw = W'(x)* + f(z) + (3.1)

where x,y, v, w are coordinates of C*, f(z) is polynomial of degree n — 1 that splits the n
double zeros of W' (x)2.

The latter geometry has been considered in [ to geometrically engineer N = 1 four-
dimensional supersymmetric gauge theory. After the transition the breaking to NV = 1
is achieved by putting N units of Ramond flux on the S3’s and the topological string
or the matrix model calculates terms in the N' = 1 effective gauge theory. In [ff] it is
already shown that the special geometry relation that determine the tree level (genus zero)
topological string amplitude F(© on the geometry (@) arise from the planar diagrams
of the corresponding matrix model. The planar loop equation of the matrix model gives
the spectral curve of the local geometry and the effective superpotential in a large class
of N' =1 gauge theory can be computed exactly by the genus zero amplitude of matrix
model or topological string. It is conjectured that higher genus topological B-model string
amplitudes should also be computed by higher genus diagrams in the matrix model.

The meaning of the topological string amplitudes F (9>0)(SZ-) in the effective theory is
as follows. In A/ = 2 supergravity action they determine the exact moduli dependence of
the F-terms

/ iz / AOFO) () WP W,5)0 (3.2)

here W, is the NV = 2 graviphoton superfield and the S; are the N' = 2 vector multi-
plets whose complex scalar field corresponds to the moduli of Calabi-Yau manifold. After

®Further generalization of this conjecture to the case of Calabi-Yau geometry with ADE type singularities
can also be made [E]
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integrating over the N' = 2 superspace these terms become the coupling R%FF_QFQ 2 of the
self-dual part of the Ricci tensor Ry to the selfdual part of the graviphoton field strength
F.

After breaking of NN = 2 to N/ = 1 by fluxes the topological string amplitudes
F(9>0)(S;) occur in the following two terms of the A = 1 action [ []]

=g / dix / APOWo5, WP (Fse FO$)IL R (), (3.3)
9 (g,
Ty = / d*z / dQG(FagFO‘B)gNiWT;SZ) : (3.4)

Here W,p, are now N’ = 1 gravitino multiplet, and S; are the N' = 1 glueball chiral
superfields coming from the original A" = 2 vector multiplets [[]]. The graviphoton field
F,p can be treated as background field in the N' = 1 theory. In []] a C-deformation is
introduced to deform the anti-commutation relation of gluino 1, to the followings

{Ya, s} = 2Fag (3.5)

It is shown that the effect of turning on the graviphoton background F,g can be captured
by this C-deformation, and the F(¥) in the second contribution I' (B.4) are computed by
matrix models at genus g. We can also see that the first term 'y in (B.J) contributes at genus
g = 1 even there is no graviphoton background F. It is shown in 2] that this genus one
contribution is also computed by matrix model genus one diagrams. There are also some
other types of gravitational corrections besides (B.3), (B-4) of the form Waﬁﬁ,W‘J‘B'yS" from
planar diagrams, which become trivial after the extremization of the glue ball superfield
S [EF. Our results confirm these very interesting ideas in [[[]—-[fJ] by a first direct tests
of the connection between topological strings and matrix models at higher genus without
using the superspace techniques in the effective gauge theory.

3.2 The two cut geometry and the tree level and genus one amplitudes

We consider now the case of a cubic potential W (x) = %xQ + %x?’ in the Dijkgraaf-Vafa
geometry (B.I). The degree one polynomial f(z) = ui1x + pg splits the double zeros of
W'(z)? at © = a1 and = = ay to the four roots ali, a2i of the equation

W (@)? + f(x) = 0 (3.6)

We adopt the notation of [§, ], and change variable (a,a],a;,a)) = (z1,22,23,74) —
(Zla 22, Qa I) where

1 2

2 = Z($2 —x1)%, z9 = i(xz; — x3)?
Q= %(:c1+x2+x3+:c4) z—%
2
I= i[(.%’g +a4) — (11 +22)]2 = (%) —2(z1 — 22) . (3.7)
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The local Calabi-Yau geometry (B.6) depends really only two complex structure deforma-
tions. We will use (21, 22) or below the A-periods S; and Sy to parameterize them. The
dependence of the genus zero super- and the higher genus potentials F(9) can be recon-
structed from scaling laws and dimensional considerations. In particular we frequently set
g,m=1.

The fundamental periods of the local geometry are

T
S = — A A,
Coomi - T = 2m/

where i = 1,2 and A = dx/W'(2)? + f(z) is a meromorphic differential which emerges
after integrating the holomorphic Calabi-Yau (3,0)-form over an S? fibre direction of the
$3's in (B1) H. In M the integrals where further calculated perturbatively for small z;.
This limit corresponds to vanishing 53's and is suitable for the perturbative matrix model
expansion. Solving the B-model and fixing its ambiguity requires a global understanding
of the complex moduli space in (21, 22). We therefore derive the Picard-Fuchs equations
and use them to explore the global properties of the integrals .S; and 1I;.

We find that derivatives of A w.r.t. z; up to second order multiplied with suitable
polynomials in z; combine to a total derivative, i.e. LA = Zk+l<2p(k’l)( Jok oL N =
dgi(z, 21, 22). Naively the differential ideal with this property is generated by three inde-
pendent differential operators £;. However dg;(z, 21, 2z2) is a meromorphic differential with
non-vanishing residua, hence one cannot conclude from the exactness that £; fl‘ A =0. For

the following two operators the residua vanish

L1 = 221(221 + 620 — 1)02, + (1 — 1021 + 12217 + 42122)0,, 0, + (3 — 221 — 622)0,
+(1 + 2) (3.8)
Lo = (221 + 229 — 1)[—221(1 —4(z1 + 22) + 5212 — 22129 — 3222)831 + (21 + 29)
(1 — 821 4 6212 — 62120)0,,0.,] + (21(7 — 1825 + 26292 + 46212 + 21 (6222 — 39))
—325(1 — 320 +223)))0., — 3(1 — 1221 + 1822 + 142129) + (1 < 2) . (3.9)

These Picard-Fuchs operators annihilate the periods and fix their expansion up to linear
combinations. The discriminant of these differential operators has the following components

0122’1 s CQ:ZQZO, I:[:1—22’1—22’2:O,
J:J= Ir1 — 1‘2)(.%’2 — 1‘3)(1‘2 - .%'4)(1‘1 - .%'4)
= (1—32)% — 620 + 922 + 142129

I
o

—~

(3.10)

I
O/‘\

)

whose schematic intersection after a suitable desingularisation of three order tangencies is
depicted in figure 1.

According to the Dijkgraaf-Vafa correspondence the periods S; are identified with the
filling fractions N;, with >~ | N; = N, of eigenvalues in the large N limit of the dual matrix
model, and it is shown that the special geometry relation and Picard-Fuchs equations are
reproduced in the planar limit of the matrix model [[] and the genus zero topological

,13,



Figure 1: Divisors in the moduli space of B-model, (21, z2) = (0, 0) is the matrix model expansion
point and along the dash line one has enhanced N =2 SUSY.

string amplitude F(© follows from integrating the special geometry relation ags = II,.
To analyze the exact effective superpotential Weg = 2mi ), (N;IL; + ;S;), where N; and
a; are 3-form flux quanta through the A; and B; cycles respectively, globally we need to
the periods throughout the complex moduli space. This is done in appendix A, where we
also find that there is no point where the periods degenerate with leading behavior that
is quadratically in the logarithms. The latter degeneration is typical for a large volume or
maximal unipotent point in the moduli space of local Calabi-Yau spaces.

Also at one loop the conjecture holds® B. [[0. The B-model expression for the one loop
free energy F(1) obtained by integrating (f-J) using (f-1]) and fixing integration constants
it turns out to be

Wi

1J

N

FO = %log <det (gs ) (2122)” > : (3.11)

where we obtain the periods S; in terms of complex structure moduli z; and the corre-

sponding inverse series

Si(z1,22,9) = —z1 - g;zl@zl + 329) — g—:zl(élzl + 132129 + 923) + O(g%)
Sa(z1,22,9) = —51(2272179)

21(S1, So,9) = 451 + 8¢%51(251 — 3S3) + 8¢*(205% — 675155 + 3952) + O(¢%)
22(51,52,9) = 21(—=S52,—51,9) (3.12)

from the two power series solutions to (B.9) at (21,22) = (0,0). Identifying S; with the
filling fractions N; we get the genus one contributions to ([B.). Note that the integration
constants ¢; in (z29)° I¢2.J%, which fix the behavior of F(!) at the discriminant components

5The one loop-test in [@] and the higher loops tests @] are made at the N = 2 point S; = —Ss.
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are global data do not depend on the base point (21, 22) = (0,0) or the holomorphic limit
S; — 0 taken at this base point to obtain the matrix model expansion. The coefficient
c = —% at the conifold (shrinking S3) is a universal property of the topological B-model.

To solve the B-model recursion we need the genus zero three point functions, which
are rational functions in complex structure moduli.

1 — (621 + 522)g% + 3(322 + 32129 + 223)g* 1— (321 + 522)g°
Czlzlzl - 169421]—2 bl 0212122 = 1692]'2

(3.13)
The three point functions C, .., are symmetric in ¢jk and from symmetry consideration
follows Clyzpzp = Cryzy2, (21 < 22) as well as Ciyzyzy = Cryzyz (21 & 22).
The corresponding matrix model is a Hermitian matrix model with the cubic potential
W(®) = %‘1)2 + %‘1)3 for a rank N Hermitian matrix ®. The partition function and free
energy I’ of the model are

F 1 —W(®
Z=ce :W/chew() (3.14)

In the large N limit the eigenvalues distribute around the two critical points 0 and
—% of the potential and form two cuts. We consider the metastable vacuum where with
Nj eigenvalues at 0 and N, eigenvalues at —%. This is a two-cut solution of the matrix
model with N7 and Ny fixed and subject to the condition Ny + No = N. In the large
N limit the free energy of the matrix model has genus expansion in 1/N2, and at each
genus there is a perturbative expansion by the t’Hooft coupling constant g/N. Dijkgraaf
and Vafa conjecture that the free energy of the matrix model at each genus is matched to
the topological string amplitudes on the local Calabi-Yau geometry (B.I]), by identifying of
the periods .S; in the geometry with the eigenvalue filling fractions N;. In appendix [B we
review more details of the matrix model calculations of the free energy.

4. The holomorphic anomaly equations

The key to the solution of the topological B-model are the holomorphic anomaly equations.
To solve them recursively one needs in general to derive three types of propagators S%, S
and S? []. In local geometries S and S®® can be gauged to zero [RF] and the derivation
of the propagators in the multimoduli case is discussed in [, BS, [4].

4.1 The holomorphic anomaly recursions

The geometry on the complex structure moduli space z; of Calabi-Yau is a special Kahler
geometry. Its metric, connection and curvature are determined by the Kahler potential
K by the well-known formula, G;; = BZ@;K, ri = = —GiEBlG,;m and R%l = —%Pfl.
They have a well-known special geometry relation with the three point Yukawa coupling
Cijr = DiDjDkF(O), which comes from the ¢t* equation [@] and can be thought of as the
holomorphic anomaly equation at genus zero

k

R = Gﬁ‘;lk + Gkﬁf - Cz‘zméfm (4.1)
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At genus one and higher genus the topological string amplitudes has a holomorphic
anomaly, and the anti-holomorphic dependence of the genus g free energy is related to
lower genus free energy by the holomorphic anomaly equation [[l]

_ 1 _
0;0;F) = 5 i C — (29‘—4 - 1) G5 (4.2)
g—1
F9) = %C_’Z]k<DjDkF(9_1) + ZDjF(T)DkF(g_T)> g>2. (4.3)
r=1

Here the C{k = eQKC'W;,ijGEk define the propagators S as 9;57% = C’gk The holo-
morphic equation can be integrated and represented as graphic Feynman rules to give the
higher genus free energy in terms of lower genus up to a holomorphic ambiguity. The

propagators can be solved by integrating its defining relation and use the special geometry
relation (f.)). One finds

SUC = 6j0k K + 040K + Ty + fi (4.4)

here flil are ambiguous integration constants, and they are meromorphic rational functions
of the complex structure moduli z; with poles at discriminant points of the moduli space.
Suppose there are n complex structure moduli, then there are %n2(n + 1) equations for
%n(n + 1) propagators S¥. In the case of one modulus, the number of equations and prop-
agators are the same, so the meromorphic functions f;k can be just set to zero. However,
in the multi-moduli case we consider, the equations over determine the propagators, so we
have to choose the ambiguity f;k properly to satisfy some constrains and ensure we can
solve for the propagators.

There are certain simplification in B-model calculations for the case of non-compact
local Calabi-Yau manifold. In this case there is a choice of gauge such that the Kahler
potential K and metric over the moduli space Gg, s in the S; coordinates is a constant
in holomorphic limit, and the dilaton component in the propagators vanish. So in the
holomorphic limit S; — 0 the connection vanishes and covariant derivative in the S; co-
ordinates is just ordinary derivative. This also makes the topological string amplitudes
entirely independent of quantities such as Euler number, Chern classes of the Calabi-Yau,
which will need to be regularized in the non-compact case. In this case, the metric and the

connection in the z; coordinates are

0Sk
({922‘ 8251

s = _ 4.
Zi%k 851 82]32k ( 5)

where 5 are constant in the holomorphic limit.

4.2 Propagators and Dijkgraaf-Vafa conjecture at higher genus

The geometry we consider has two complex structure moduli. In order to solve the propa-
gators, the holomorphic ambiguity f;k have to satisfy 3 constrain equations by eliminating
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propagators S¥ in ({f.4). These constrains equations are rational functions of the complex
structure moduli z;,” and we are able to find a rational solution for the f]’k

i =— [6 — (4921 4 482) g% + (16323 + 21921 25 + 12623 )g* (4.6)
(21023 + 3042225 + 2422, 22 + 1082«3)96)] /(20¢° 2, I2.7)
fl=— [29 — (7921 + 15720)g% + (1022 + 2602122 + 21022)¢%] /(201 120)  (4.7)
fl = [7 (5521 + 6820)g2 + (14222 + 3152, 2 + 21922) "
— (12023 + 3382229 + 4922122 + 23425’)96} /(2098 25 12).

By definition f;k = fr; and the (21 < 22) symmetry determines the other f;k, e.g.
f2, = fli(z1 < 2) et.c. Note that the discriminant factors in (B.10) should be the
only singularities appearing in the denominator for the ansatz of holomorphic ambiguities
and in fact all appear.

The holomorphic anomaly equation at genus one can be integrated to give the Ray-
Singer torsion of the target manifold. The genus one free energy can also be expressed in
terms of genus zero three point functions and the propagators as follows

1 .
o F) = 5sﬂfcijk +0; ) arlog(A,) (4.8)

here a, are constants and A, are various discriminants of the local geometry. The holo-
morphic ambiguity f]lk, should give a solution of the propagators S¥ that satisfies the above
consistency check ([.§). We have chosen our ansatz of the holomorphic ambiguity ([£4)
that satisfies the (.§) with the constants a; = 1/15, ag = 2/15

o FY) = —sﬂ“c@]k + 0 ( log(2122) + 7= 10g(A2)> (4.9)

This choice of ansatz is convenient in the sense that it leads to the correct leading behavior
in genus two, so it is easier for us to fix the genus two holomorphic ambiguity there.

In local geometry the genus two topological free energy can be integrated from the
holomorphic anomaly equation. It is

@ — Sl]sklp(jk)l + = SijFA(,l) _ lSijSlei(l)Fj(,Sl) + lsijﬂ(l)Fj(l) (4.10)

i mmn 0 i mn 1~(0)
5 5UsHs E%,LP;SJ SSUSHSTESEO) 4 5@

We fix the genus two holomorphic ambiguity f (2 with some initial data from matrix model
calculations

@ = —[1253—10503(2?1—|—z2)92—|—27(1081z%+950z122+1081z§)g4 (4.11)

—26865(21 + 22) (21 — 22)296] /(9000g 21 20.72),

"We note that while genus zero three point functions are rational functions of the complex structure
moduli z;, the connections I' 5 are generally not rational functions. They combine to give rise to rational
equations for holomorphic ambiguity fJ k-
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Once the holomorphic ambiguity is fixed, we can compute the genus two free energy to
very high order using (§.1(]). The topological string approach is much more advantageous
than direct matrix model calculations where it is hard to compute to free energy at higher
orders (see appendix [B for more details). After some extensive computer running time,
we are able to make many checks of the topological string predictions (f.1]) below for the
genus two free energy.

1 1 1 35 35
F(Q) - | —— - =N N 6
240 <N12 * N22> * ( 6 ' 6 2>g
2 PAPR.] 66132 3 2 10
+(338N1 — 1632N1 N3 + 338N, )g + TNI — 120880N1“No + -+ |g

13052 1 2
+ (L’g Tyt - NN, 11821668 N >912

+ (12963696]\/15 — 244438427N1* Ny + 745362156 N1 3 No? — - - - ) gt

35002369227N 5 148144671957 4

+<362264064N16 - n 1° Ny 1 N4 Ny2

— 57597548553 N1 2 Ny + - - - ) gt

Ny N1 Ny + 1580964252892 N, 5 No?

20035470208, 862430780350
L T S

10256675032550
_ . N14N23+m>918
1250634104832 44363662176978 303466060570354
+ —N18 — N17N2—|— ]\716]\722
5 5 5
854152004682126
- - NP Ny 4 237637137780236 N1 T Not — - - - ) g% (4.12)

The main difficulty in the B-model calculations is to fix the holomorphic ambiguities at
each genus. Also the Feynman rules that solve the holomorphic equations quickly become
very complicated. Here we push the calculations only to genus two in our calculations,
since there are less new conceptual issues beyond that.

5. Conclusion

The B-model iteration in the genus bears some resemblance to the procedure compute
higher genus free energy and resolvent of the matrix models for one-cut solution in [[[J] and
generalized to multi-cut solution in [[3, I§, [, where the iteration equation is obtained by
doing 1/N expansion in the loop equations, and looks similar to the holomorphic anomaly
equation in topological strings.

From the hermitian matrix model point of view the anti-holomorphicity is very un-
natural. The holomorphic anomaly equations were re-interpreted in [ as infinitesimal
manifestation of the fact that the topological string partition function transforms as a
wave function under change of polarization in the middle cohomology of the target space.
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Using this picture the failure of holomorphicity can be traded against a failure of modularity
with a similar iteration [5{], which makes the connection more naturally.

It would be very interesting to compare this latter iteration with the iterations [[i§, 9]
in detail, since this can in principle fix the holomorphic ambiguity in B-model calcula-
tions. Fixing the holomorphic ambiguity systematically is one of the main difficulties for
topological string calculations in many other models. We hope further studies will clarify
these issues and provide valuable lessons in fixing holomorphic ambiguity in more general
models.
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A. Moduli space and monodromy of the two cut matrix model

A.1 Compactification of the moduli space and local expansions

The aim of this section is to obtain the periods everywhere in the moduli space and to
determine the monodromies. For the compactification of the moduli space we use the
projective space CP? with homogeneous coordinates (Z1,22,23) and identify the Z3 # 0
patch with )
Z1

22
g = — A.l
21 , 2= (A1)

23 3

In addition to the divisors listed in (B.10) we get now a CP! divisor at infinity, at which
the periods turn out to be non-singular. We calculated the local expansion near all nor-
mal crossing divisors and determined the local monodromy. By analytic continuation we
determined the global mondromy. One remarkable aspect of the geometry is that there
is no point in the moduli space where at least one of the periods degenerates with dou-
ble logarithm, which would correspond to the normal large complex structure point of a
local geometry at which the mirror expansion in the large Kahler coordinates leads to a
convergent instanton sum.

Suppose we expand the Picard-Fuchs equation around a common point of two singular
divisors Aq(z1,22) = 0 and Asg(z1,22) = 0. In order to find complete solutions of the
Picard-Fuchs equation, one must choose a good local coordinate around these singular
points. The technique for choosing good local coordinates is quite standard in algebraic
geometry. For our two parameter model, there are two possible cases:

. det(%ﬁ;’) # 0, then the point Aj(z1, 22) = Aa(z1, 22) = 0 is called the point of normal
intersection of divisor Ay = 0 and A; = 0. In this case a choice of good local
coordinates is simply (A1, Ag).
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. det(%ﬁ;’) = 0, then this is called a point of tangency of divisor A; = 0 and Ay = 0. In
this case one will not be able to find all solutions around the point of tangency with
the choice of local coordinates (A1, Az). We will encounter a very common situation
in which the divisors have the following form

Ay = a® + be
Ay =b (A.2)

here a, b and c are degree one polynomial of complex structure moduli z; and zo. The
standard technique in algebraic geometry is to introduce two exceptional divisors to
resolve the point of tangency. It turns out that a choice of good local coordinate in
this case is (a, a%) In our analysis we will follow the standard procedure and use this
good local coordinates.

We list the asymptotic solutions of Picard-Fuchs equations and their monodromy at
various singular points of the divisors (B.10) in the moduli space. Some of the singular
points can be obtained by exchanging z; and 23, and we only list once these symmetric
singular points.

(i) C1 N Csy. his is the matrix model point we have tested Dijkgraaf-Vafa conjecture at
higher genus. Th good choice of local coordinates is simply (z1, z2). For completeness
we list the periods

fi= % - é21(221 +3z9) + -
fa = —% + é22(321 +2z9) + -+
1 1 9 9
fs = filog(z1) + - + 2 E(—élzl + 2122+ 525) + - -
fa = falog(z2) — % — % - %(52% + 21z —425) + - (A.3)

(ii) Cy N I. The intersection point is at (21,22) = (0,31), and the choice of good local

coordinates is (x1,x2) = (21,1 — 221 — 222). The asymptotic solutions for periods are
f1 = Voa(l — day — 19)
5 2
Ja = \/CU—2<£U1+%— <2$%—§$1$2—%> +>

5) 3
f3:1'1<1—11'1_§1'2+"'>

Ja

2 7 13
falog(z1) + 3 + 29 + <§x% —3x119 — Em%) + ... (A.4)

(ili) C1 NJ. This is a point of tangency of the two divisors at (z1,22) = (0,3). The
singular factor J can be written as

1 2
J=1-062; — 629 + 927 + 142129 + 925 = 9(22 — §> + 21(—6 + 1429 + 921) (A.5)
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Following our discussion above we see a good choice coordinates is (x1,x2) =

(—21, 1 — 2). This is the local coordinates around the intersection of the blow up
(22*5)2 '3

divisor with the divisor C;. The asymptotic expansion for the periods are

5 1 23 5
_ 2 (1. = 0 22 _ 2, ...
fi = oz ( 216" T 727 T J665672 >

4
f2 =x§<1+§x1+4xz+--->

729
f3 =1+ 81z — 108z, x5 — ?xg +
5736 108
f4 = f1 10g($1) + $22 (E — —7 To + -+ ) (AG)

We can also solve the Picard-Fuchs equations with the local coordinates around the
intersection of the blow up divisor with the singular divisor J. This will be useful
later on when we try to match the basis and derive the monodromy of the divisor J.
The good choice of local coordinates around this point is

21(6 - 1422 - 921)

Tr1 = - 17
9(22 — %)2

1
Tr9 = g — 22 (A?)

We find the asymptotic expansion for the periods with this coordinates

5 ) 33
fi Zm%ﬁ(l——m—i——xz—i—---)

16 8
3 43
PRRTIRE T T
f3=1—648z5 +---
5 /512 3008
fa = filog(z1) + x5 <1—5 +3201 — ——wp + - > (A.8)

I'NnJ. This is a point of tangency between the divisors at (21, 22) = (i, i) We write
the singular factor J as
J = (21 — 22)2 + (1 — 221 — 222)(1 — 4z — 422) (Ag)

2 1—2z29—229

A good choice of local coordinates is (1, x2) = ((21—22)%, Gro)y?

). The asymptotic
solutions for the periods are
3 35 5 1
1=z 1+§m1+m2+6—4x1+1x1x2+---
f2 = 2129

4 23
f3 = filog(z1) + 3 + 1—690% + 3wy + - -

/11
fa = folog(z1) + 2123 <§ + 3t ) (A.10)
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(v) C1 N Cs. In the homogeneous coordinate (Z1, 22, Z3) the divisor Cy is Z; = 0, so the
good local coordinates is (z1,x2) = (21, 23). Since at the intersection Zy # 0, we can
choose Z3 = 1 and use the relation (A1) to find (z1,72) = (2, %) The asymptotic
solutions for the periods are

. 23 1
fi :$1$22<1_5$1—6$2+"'>

-3 1 67 7 1
fo :5622(1—Z$2—m$%+ﬂ$1$2—§$%+”'>

-3 65 1 1
fs = filog(xz1) + xy 2 <m2 — mx% + §x1x2 — gxg + - )
2 211 , 2

_3 1
fa = (f1 — 2f2)log(z2) + x5 (gmz ~ Jog ¥t [gtire — 6953 + - >

(vi) INCy. In the homogeneous coordinates Z1, Zo and Z3, the divisor I is Z3—221 —2Z5 =
0. At the intersection with I N C the coordinate Zs # 0, we can choose Z; = 1 and
use the relation ([A.1]) to find the good local coordinates

(.%'1,1‘2) = (23 — 221 — 222,23) (A.ll)

. 1—221—222 1
- Z9 ,22

The asymptotic solutions for the periods are

_3 —
fi = Ja <1+ 1 . x2>

_3 3 5 3 3
f2:1’22<1+Z$1_6—41'%4‘@.%'11'2_6—4%'%4‘"')

_3 _
f3 x22(x1+x2)<1+%+”'>

i 1 1 13 1 1
fa = filog(z2) + Va1, ? <— TR @xf + gt — 3—2$3 +>

(vii) J N Cs. In the homogeneous coordinates Z, Zo and Z3, the divisor J is 25 — 62123 —
62973 +977 + 14217+ 972 = 0. At the intersection with JNCy, the coordinate Z5 # 0,
we can choose Z; = 1 and use the relation (JA.]) to find the good local coordinates

(z1,22) = (35 — 63123 — 63923 + 977 + 14259 + 972, 23)

: , (A.12)

(1621062 +927 + 142129+ 925 1
N 22 Z9
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The asymptotic solutions for the periods are
-3 103 — /2i 8+ V2i
2,72
— 1 ...
i = zizy < t g 1t T2t >

—5—+/2i —5—1/2i
61 T 16 xQ‘%"'>

_3
2

f2:$2 <1+

f3 = <f1 - 8192(4212713\/%)&) log(22)

3 256(7 + 44/2i 1024(2 + 5v/2i
+1, 2 —(—\/_Z)m— ( \/_Z)m—l—---
243 81
—3 (512(23 — 10v/2i
f4:f110g:61+3:22< ( 1 ):c2+---> (A.13)

A.2 Analytic continuation

The periods of a Calabi-Yau manifold are integrals of the holomorphic three-form over the

three-cycles. In the case of the Dijkgraaf-Vafa model, the integrals of the holomorphic

three-form over the symplectic three-cycles reduce to integrals of a differential one-form

over its branch cuts on the complex plane. For convenience we consider the cubic potential
1

W(zx) = 53:2 + %x?’ with the cubic coupling g set to one. The A-cycle periods and B-cycle

periods are 8
S1 = QLm " dz/(x — x1)(x — 22)(x — x3)(x — 24)
Sy = —% " dz/(x — x1)(x — x9)(x — x3)(x — 24)
|
I, = 5 dey/(x — x1)(x — x2)(x — x3)(x — x4)
Ao
I, = QLm dey/(x — x1)(x — x2)(x — x3)(x — x4) (A.14)

The asymptotic expansion of the periods around the origin (21, 22) = (0,0) was con-
sidered in [[]]. Around this point the roots satisfy z1 < x9 < z3 < x4 and the cuts between
1,22 and between x3, x4 shrink to zero sizes. It was found there that the asymptotic

expansions of the periods are

z 1
S = Zl - 521(221 +3z2) + -+
1
Sy = —% + 522(321 +229) +---
A3 AZ
omilly = =0 4+ =0 4 S1log [ 2L ) — 22— (S) + S5) log(A2) + - --
3 2 4 4
Ay A1
2milly = 30 + 70 ~3 + Sz log (%) + % — (81 + S) log(AZ) + - - (A.15)

8The periods are determined only up to a sign ambiguity due to the square root factors in the formula.
Here we have taken the proper signs to match the convention of [{.
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The Picard-Fuchs equations we derived can determine the constant term in the B-cycle

periods II; and the cut-off parameter is fixed to be Ay = —%. We can find the monodromy

matrices around this point z; — z;e?™

1000 1000
0100 0100
M. = M. = A.16
= 1010 |’ = 0010 ( )
0001 0101

Since the integrals are done over symplectic cycles, the monodromy matrices are elements
of the symplectic group Sp(4, Z) and satisfy the van Kampen relation M,, M,, = M., M., .

Now we want to analytically continue the periods to other points in the complex
structure moduli space. The analytic continuation will fix the symplectic basis of periods,
which is not available by solving the Picard-Fuchs equation around these points. In order
to do the analytic continuation, we must do the integrals in (JA.14) exactly. The A-cycle
periods S; and the difference between the two B-cycle periods II; — Iy can be written in
terms of complete elliptic integrals of the first, second and third kinds, and one of the
B-cycle periods involves incomplete elliptic integrals.

We consider analytically continue the periods ([A-I4) to a singular point (21, 22) = (0, 1)
in the moduli space. This is the closest singular point to (z1,22) = (0,0) in the moduli
space. We will use the local coordinate (Z1,Z2) around the intersection of the blow up
divisor Fj : % — zo = 0 and divisor Cy : z; = 0 as we did for solving the Picard-Fuchs

equation

22 = — — 29 (A.l?)

We directly compute the asymptotic expansion of one B-cycle period Ils and use the asymp-
totic expansion formulae of the complete elliptic integrals in [ff] to obtain the asymptotic

formulae for other periods.

For convenience we define a function in terms of complete elliptic integrals of the first

kind K (k?), the second kind E(k?) and the third kind II(a?, k?) as the following

1
48a4(1 — a?)?(a® — k?)
+2a*(2 + k% + 26N E(k?) + [-3a'® — 3k5 + a®(4 + 5k?)

+a*k?(4 — 10k%) — 2a5(2 + k%) + 3a%k* (1 + 2k%)| K (k?)

+3[—a'? — 5a®k? + 5a'k? + kS + 24101 + k?)

—2a%k*(1 + KD (a?, k*)} (A.18)

P(a® k%) = 5 X {a®[3a® + 3k* — 4a5(1 + k%) — 4a®k> (1 + k%)

We start from the original matrix model point (21, z2) = (0,0) in the complex structure
moduli space where 1 < z2 < x3 < x4. The expressions for the A-cycle periods can be

— 24 —



found using formulae in [if]. After some algebra we found

S; = % " dzy/ (x4 — x)(x — x3) (2 — 22)(x — 1)
. LQ(ZA — .%'3)(1‘2 — .%'4)(.%'4 — 1‘1)2 r3 — T4 (.%'4 - 1‘3)(.%’2 - 1‘1)
C2r (e — a)(x3 —71) P<9€3—9€1’ (904—962)(903—961)>
Sy = % de\/(:m—x)(xg—x)(xg—x)(m—xl)
. LQ(ZA — .%'2)(1‘2 — .%'1)(.%'3 — 1‘2)2 X9 — 1 (.%'4 - 1‘3)(.%’2 - 1‘1)
C2r (g — o) (x3 —71) <9€3 — 21 (24 — 22) (23 — 961)) (A.19)

and the difference between the two B-cycle periods is

2mi(Ily — 1) = /I3 dzy/ (x4 — ) (x3 — ) (2 — 22)(x — 1) (A.20)

T2

N 2(1‘4 — .%'2)(.%’3 — 1‘2)(.%’2 — 1‘1)2 r3 — T2 (1‘3 - .%'2)(1‘4 - .%'1)
B V(T4 — x2) (23 — 71) P<363—961’ (364—962)(363—961)>

We will take these exact formulae at the matrix model point and analytically continue to

the local coordinate (A.17).

We can also directly compute the asymptotic expansion one of B-cycle periods Il
around (21, Z2) = (0,0) as follows

Ao+i-1 1
2milly = / dx ((x +1)2— 3T 52) (22 — %,22) (A.21)

Motz -3 1 522 (512)?
= d N2 - - 1% It S B o o VYO T
[y (=g a) (o 32 - B voe

where I = \/ % — 27122 + 2Z5. We can compute the integrals exactly for the first few leading

terms written above, and expand around the cut off Ag = oo keeping only positive powers
of Ao.

We can now use the expressions for the periods ([A.19), (A.20), (]A.21)) and obtain the
asymptotic expansions to a first few orders

S1 = ?fl
V3 3v3 1
_Tfl + ?f2 - mf:s

/3

My = Tl + Y2 (/i + (3 - log(2'3%)) 1)

A3 A2 1 V3
owilly = =0 4 20 _ = 4 V<
e e N DR

Sy =

f3 — (S1 + S2) log(12A2) (A.22)
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where f1, f9, f3, f4 are the asymptotic expansion of the solutions for Picard-Fuchs equation

5 1 23 5
= 3221 = —3 — —33, — - 32
fu= 2z ( 21671 T 7272 J66s6 2 T )

we found earlier

- 4 -
f2 = z§<1+§z1+4z2+--->

729
f3 = 1+81%7 — 108525 — ?zé e

Ja

- 5736 108 _
filog(z1) + Z3 <E — ng + .. ) (A.23)

These asymptotic expressions of periods are linear combinations of the 4 solutions to
the Picard-Fuchs equations we found earlier, provided we choose the cut-off constant to be
Ao = —%. Thus we have found the canonical basis for the symplectic cycles. It is easy to

write down the monodromy matrices around this point

1000 ~10 0 0
0100 2100
M. = Mr = A.24
< 1010 | h 00—12 (A-24)
0001 000 1

The monodromy around the singular divisor C] is the same as before Mz, = M,,. We can
also see that the monodromy matrices are elements of Sp(4, Z) group and satisfy the van
Kampen relation Mz Mg, = Mg, M3, .

In general it is not easy to do the analytic continuation of periods. We use a numerical
method to match the basis of solutions of Picard-Fuchs equation at different points of the
moduli space. We consider the intersection of the singular divisor J and the blow up divisor

Fi % — 29 = 0. The local coordinate and the solutions for the Picard-Fuchs equation are
6—1429 — 9
Z1 = 21( 221 5 Zl) -1,
9(22 — g)
1
22 = g — 29 (A25)
5 5 33
— 3252 (1 23 1225 1 ...
f1 2122< 16z1+ 8z2—|— >
- 3. 43 .
fo = Z%<1+121—722+--->
f3=1—648%3 4 -
- 2 /512 N 3008
fa = filog(z1) + 23 <E +325 - —— %+ > (A.26)

Using numerical method we find the canonical basis of the periods as the following

S1 = (—0.14 — 0.264) f1 + 0.082f,

Sy = (0.14 4 0.267) f1 + 2.6 f — 0.048 f3 — 0.082f;

I, = —0.26if; + 1.03ify — 0.016f3

Iy = 1.03ify — 0.016i f3 (A.27)
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The monodromy matrix of the divisor Fj is the same as we have derived in (JA.24)). We

can now write down the monodromy matrix of the singular divisor J by looking at the

transformation around 3, — %;e%™

10-2 2
01 2 -2
M, = A28
J 00 1 0 ) ( )
00 0 1

For the singular divisor I : 1 — 221 — 229 = 0, we find essential singularities instead of
simple singularities. This can be seen from the asymptotic behavior of the solutions of the
Picard-Fuchs equation at any point in the divisor. We find that the radius of convergence
for the asymptotic expansion is zero, i.e. the series is always divergent. This is an interesting
new feature of the Dijkgraaf-Vafa model.

B. Matrix model calculations

In this appendix we give some details of the matrix model calculations following the ap-
proach in [B, ff]. The cubic matrix model can be expressed in the eigenvalues of the matrix

W(®) = tr<32 + 9?) - fj (%2 gf) (B.1)

i=1

Then the partition functions Z and free energy F' are

3
Z:eF:W/DQ)e (q’)— 0 /Hd)\A2 LGS (B.2)
0 7T

where A(A) = [[;;(Ai—A;) is the standard Vandermonde determinant from the measure of

the matrix. We expand Nj eigenvalues around the critical points a1 = 0 and Ny = N — Ny

eigenvalues around the critical points ao = —é. Suppose the fluctuation is p;, v;
)‘i:,uia i:1)25"'N1
1 .
)‘H-Nl = _§+Vi Z:1,2,---N2 (B?))

Then the potential and the Vandermonde determinant become

W(®) = %Z: (’“; + %) - % (V; o ) +N2W< ;) (B.4)

=1
1 2
2 2
A%(A) = H (1iy — iz) H (v, — VJQ H H (qu—yj ) (B.5)
1<i1 <is <N 1<j1<ja<Na 1<i<Ny 1<5<N, g

Now we can treat the expansion around this vacuum as a model with two matrices ®; with
eigenvalues p; and ®, with eigenvalues v;. The interaction terms [[, <i<M IL <j<Ns (i —
v + é)Q in the Vandermonde determinant can be exponentiated and written as potential
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for the two matrices, then the partition functions can be straightforwardly evaluated by ex-
panding the potential and computing the expectations values of Gaussian matrix model [[].
We note the fluctuation around unstable critical point —é has a wrong sign kinetic term

—V—;. However this model is perturbatively well defined if we treat ®; as a Hermitian
matrix and analytically continue ®5 to be a anti-Hermitian matrix. Alternatively, one can
also determine the perturbative part of the free energy by directly evaluating the Gaussian
integral for various values of N1 and N» and solving for the coefficients in the perturbation
series. Using this method we are able to push the computations of the free energy to the
eighth order, and provide many checks of the topological string calculations in () The

perturbative part of the free energy is the followings

Fpert = _N2W(a2) - 2]\71]\[2 IOg(g)

2 2 N N
+ K—Nﬁ — 5N12Na + 5N1 No® — —N23> + <—1 - —2”92

3 3 6 6
1 1
+ §Nﬁ—gd%%@+@NﬁNf—24WNf+§Nf
3 3 3 3
7 31 7
~N{2— Z2NyNy + —N52 ) | ¢*
+<3 1 3 1 2+3 2)]9
56 871 2636 2636 871 56
+ —N15 — —N14N2 + —N13N22 — —N12N23 + —N1N24 — —N25
3 3 3 3 3 3
332 923 923 332 35 35
TENG — ZEN2N, + 5NN, - 2N N - =Ny )| g0
+<91312+31292+61629
12 6823 28765 67310
SN — SN N+ TN AN - N BN
3 2 2 3
1864 47083
+<—§4w4——774w%w+wamwwﬁw2¢-~>

+<%&W?—wwNuw+3%Nfﬂgg

9152
4-[<—E;—Ah7-45118Aa6A@-+247980AQ5A@2-540378AA4A@3-t--->
54416
+<—3—Nf—1wwwwﬁw+5m%mw%w2¢~>
66132 5005 5005
+C?—M%4m%mﬁmiu>+<3_m— 3Nakw
1 132581
N 65536 Ny 933906 NN, + 3258178 N{EN,2
3 3 3
37761034 52780010
NN+ N N >
1762048 12980560 54863776 256344964
M- NP N+ NN - T NP NP
9 3 3 9
13052 1 2
<—§gg—§gﬁh4———§9%?§§—Aﬁ3ﬁb-+]1824166Aﬁ2ﬁb2:F--->
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1680704 8748896 1680704
— NP ———— NN+ ———Np? ) [ g"
9 9 9
5912192 68087967 564130824
+ KTMQ - T NN, o e N TN

—286953520AH6A&3—%52463664OAG5A&4:;--->

25136768
(————————Pﬁ7——97692942Aﬁ6ﬁb—%537372540Aﬁ5ﬁb2——1166263112AG4A&3-t--->

7 N\

12963696Ah5——244438427AH4A&—+745362156Ah3ﬁ&2:F---)

2 2
ém%%lt%wmmeﬁn_+&mmw_mme e
7 7 6 6
11534336 1834216417 5978643549
-+[<———?;———ﬁh10——————f§————Ah9Ab ————Z—————AASAbQ——6444922816AG7A@3

«+14743157646AH6A&4——19289163957Aﬁ5ﬁb5:t--->

4347551555 29785674795
(66841600A58«—-———75————Aa7 ) ————7;————A56A&2

—421513433O5Aﬁ5ﬁb3—%58765399140AH4A@4:;--->

35002369227 148144671957
(362264064A56-————TI————p@5A&<+-————71—————A54A@2

—57597548553AH3A@3;t...>

1882324352 28221164683
(-———?;————pﬁ4-— ————7;————-Aﬁ3fwz4-18539047948AQ2A@2:;--->
693764720 3860943680 693764720
( : N2 — 2 Ny 2-%————————P62>}916 (B.6)

This model also contains a non-perturbative part of free energy defined as the volume
factor of the U(N) gauge group as in [i7], where it was computed with the following result
N? N3 3 1
.ap:—jngg+§h%m@—Zm@+Mb—EbgMN@

[e.9]

1 BZg ( 1 1 )
+2¢/( U+§;@@—U N?”+J@r2 (B.7)

This non-perturbative part of the matrix model has the correct universal leading behavior

of Calabi-Yau near the conifold point of its moduli space, as first pointed out in [f] in the
context of ¢ = 1 string compactified at self-dual radius.
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