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1. Introduction

The holomorphic anomaly equations, discovered in [1] in a world-sheet analysis of a topo-

logical twisted σ-model known as B-model, are a generalization of Quillens anomaly to

higher genus and more general world-sheet theories. Gauge theory is embedded in string

theory and in the context of N = 2 geometric engineering the former can be obtained in

a double scaling decoupling limit of the string theory. The holomorphic anomaly equa-

tions commute with the decoupling limit and the recursive procedure which determines the

higher F (g)(τ, τ̄ ) [1] can be build up entirely from gauge theory quantities. The F (g)(τ, τ̄ )

describe certain gravitational couplings to the gauge theory.

In section 2 the corresponding topological partition of the 4d N = 2 SUSY gauge is

determined by integrating the holomorphic anomaly recursively, up to finitely many data,

which have to be fixed by analyzing the boundary behavior of the F (g)(τ, τ̄). The properties

of F (g)(τ, τ̄ ) are to a large extend determined by the modular group of the corresponding

Seiberg-Witten curve and we are able to write them as global expressions in terms of
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“almost holomorphic” modular functions of this group. Various holomorphic limits are

readily taken from our expressions and provide conjectural solutions to the unitary matrix

model [3].

Riemann surfaces Σg of all genera can be embedded in noncompact Calabi-Yau three-

folds X, i.e. the local limit of the B-model exist for an arbitrary Riemann surface. There

are choices in this embedding, which affect the reduction of the holomorphic (3, 0) form

from X to a one form λ on Σg, which is a key datum of the local B-model limit. Except

for the product case, λ will be a meromorphic form with residua on the punctures of a

Riemann surface Σg,h. In the pure SW-case, one has poles with vanishing residua. In the

massive SW-case and other local geometries, one has further mass parameters associated

with the non-vanishing residua.

In section 3 we apply the holomorphic anomaly equations to N = 1 4d gauge theory in a

geometry proposed by [4]. This is a case where λ has essential singularities or differently put

one deals with open Riemann surfaces. According to the Dijkgraaf-Vafa correspondence [5]

the holomorphic anomaly equations provide here in a particular region solutions to the large

N expansion of a complex matrix model, which is the solution to an open string problem.

This has a description in the A and the B language as summarized following commuting

diagram of duality relations

mirror
duality duality

mirror

large N−duality

geometric transition

dualitylarge N−

geometric transition

closed topological A−model
on blown up geometry with

closed topological B−model
on deformed geometry with

holomorphic Chern−Simons
th. reduced on holom. curves

open topological string with
3d Lagrangian cycles 

3d Chern Simons theory

matrix model

even form R flux

odd form R flux

The Dijkgraaf-Vafa conjecture, relevant to calculate effective terms in N = 1 supersym-

metric theories in 4d, involves non-compact Calabi-Yau geometries, which are in particular

not toric. Explicit test of the conjecture are therefore difficult and have been done only at

tree level [5] and at genus one [8, 10]. In the genus one case it is found that the free energy

for multi-cut matrix models can be written in closed form [8, 11]. We set the B-model for-

malism up to get recursively closed expressions at all genus and check the Dijkgraaf-Vafa

correspondence of the first non-trivial example, the two cut case, explicitly at genus two.

As in the N = 2 case, we make a detailed analysis of the moduli space and the modular

transformation of the periods in appendix A, which enables us to solve the theory at various

regions in the moduli space. Different from in the N = 2 case however there is a divisor

with essential singularities of the periods in the moduli space, where the perturbative
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description breaks down. From the topological string point of view we obtain solutions

for a new class of non-toric, non-compact Calabi-Yau geometries, which have no point of

maximal unipotent monodromy.

2. Gravitational corrections to N=2 Seiberg-Witten Gauge theory

In this section we introduce a B-model, which calculates the higher genus space-time in-

stantons of N = 2 Seiberg-Witten gauge theory. The genus g generating function F (g)(a)

of these space-time instantons describe gravitational couplings to the gauge theory [14].

The coefficients of

F =

∞
∑

g=0

λ2g−2F (g)(a) (2.1)

can be calculated iteratively in the instanton number, 1/a4 powers below, using localization

in the moduli space of gauge theory [15, 16, 18, 17] or worldsheet instantons [8, 9]. Global

properties under the monodromy group, which should be central in the solution of the

theory, remain obscure in these approaches. We find that studying the global properties

enables us to solve the B-model completely and in particular fix the holomorphic ambiguity.

This yields closed modular expressions which determine the instanton contributions to all

orders in the instanton number, but are iteratively in the genus i.e. in λ. We finish the

section with some speculations how to obtain closed expressions in λ as well.

2.1 Modular properties of the genus zero and genus one sector

We focus on simplest case of SU(2) gauge theory without matter. Generalizations to other

gauge groups and matter spectra with asymptotic freedom are certainly possible. The

monodromy group of pure SU(2) Seiberg-Witten theory is Γ(2) ∈ Γ0 = SL(2, Z) generated

by [19]

M∞ = PT−2, M1 = ST 2S , (2.2)

where S =

(

0 −1

1 0

)

and T =

(

1 1

0 1

)

are the generators of Γ0 and P =

(

−1 0

0 −1

)

. Using

modular properties as well as the B-model holomorphic anomaly we are able to express

the F (g) in terms of Γ(2) forms and the quasi-modular form of weight two E2, see (2.22)

for our conventions.

The natural embedding of gauge theory in type IIB string theory [20] is the physical

explanation that the higher genus worldsheet technique of [1] applies to the gauge theory

space-time instanton calculation. More precisely as found in [20] IIB theory on the local

Calabi-Yau space O(−2,−2) → P
1 × P

1 has a double scaling limit in the two complexified

Kähler parameters t1, t2 of P
1 × P

1 in which F (g)(t1, t2) approaches F (g)(a). What we

find below is that the holomorphic anomaly equation make sense in the limit and can be

directly viewed as a property of the gauge theory.

The Picard-Fuchs equation for the periods a =
∫

a
λ and aD =

∫

b
λ of the elliptic

curve [19]

y2 = (x − u)(x − Λ2)(x + Λ2) (2.3)
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with meromorphic differential λ =
√

2
2π

y
x2−1

dx

∂2a

∂2u
=

a

4(1 − u2)
(2.4)

allows to calculate the genus zero prepotential using the relation ∂F(0)

∂a
= aD up an irrel-

evant constant. Below we set the Seiberg-Witten scale Λ = 1 for convenience. The scale

dependence can be easily recovered by dimensional analysis. The details of the calcula-

tion that leads to explicit expressions for the periods can be found1 in [21]. The elliptic

curve (2.3) with Γ(2) monodromy has the j-function j(τ) = (3+u2)3

27(u2−1)2
, which allows to

write [22]

u(τ) =
c + d

b
, (2.5)

as the Hauptmodul of Γ(2) in terms of the ratio τ =
∫

b
dx
y

/
∫

a
dx
y

= − 1
4πi

∂2F(0)

∂2a
of the

periods over the holomorphic one-form. The latter are solutions of the 2F1 hypergeometric

differential equation ∂2a
∂2u

= 2u
(1−u2)

∂a
∂u

+ a
4(1−u2)

, which implies that the inverse relation

to (2.5) can be written in terms of a Schwarz-triangle function (see e.g. [23])

τ(u2) = s(
1

4
,
1

4
, 1;u2) :=

i(1 − u2)
1
4

2(1 − i)

2F1(
1
4 , 1

4 , 1; 1 − u2)

2F1(
1
4 , 1

4 , 1; 1
1−u2 )

. (2.6)

We defined in (2.5) b = θ4
2, c = θ4

3, d = θ4
4, where θ are the Jacobi θ-functions and the

Jacobi relation reads b + d = c. Using the modular transformation

T :
b → −b

c ↔ d
S :

b → −τ2d

d → −τ2b

c → −τ2c

(2.7)

and (2.2) it follows immediately that u(τ) is invariant under Γ(2). For further reference

let us note that the discriminant of the elliptic curve is given by u = ∞ and

∆ = u2 − 1 = 4
cd

b2
= 0 . (2.8)

The Kähler potential in rigid special geometry is given by (see [24] for a recent review)

K = i(XI F̄Ī − X̄ ĪFI) . (2.9)

For the Seiberg-Witten curve X1 = a and τ := ∂2

∂2a
F so that the metric becomes

gaā = ∂a∂̄āK = 2τ2 . (2.10)

The genus one amplitude is obtained by integrating the genus holomorphic anomaly using

the special geometry relation [25]

F (1) = − log(
√

τ2ηη̄) . (2.11)

1In [21] the isogenous curve y2 = (x2
− ũ)2 − Λ4 with the meromorphic differential λ = i

√

2
4π

2x2 dx

y
is

used. This means that aSW = aKLT, aSW
D = aKLT

D /2, τSW
D = τKLT

D /2 and the monodromy is Γ0(4) instead

of Γ(2).
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Note that the holomorphic ambiguity is fixed by requiring that F (1) is invariant under

SL(2, Z) transformations and regular inside the fundamental domain H. Indeed η is the

unique modular form of weight 1
2 so that F (1) is regular inside H.

In the holomorphic limit2 τ̄ → ∞, we get [25]

F (1) = − log(η(τ)) = −1

2
log

(

∂a

∂u

)

− 1

12
log(u2 − 1) . (2.12)

This the first equality agrees with the result in [14]. The form of F (1) in terms of u and ∂a
∂u

follows in the rigid limit from [25] and was observed in [8]. Using (2.12) and η12 = 2−4bcd

one gets
∂a

∂u
=

θ2
2

4
. (2.13)

Further with (2.5) and the formulas for the derivatives of the θ functions we find

F (0)
,3 (τ) :=

∂3F (0)

∂3a
=

∂τ

∂a
=

8
√

b

cd
=

1

∆

(

∂u

∂a

)3

. (2.14)

This can alternatively derived by taking twice the derivative w.r.t. to a in the Matone

relation F (0) − 1
2a∂F(0)

∂a
+ u = 0 [29]. Using the Picard-Fuchs (2.4) equation and (2.13) we

can write the period as3

a(τ) =
1

3θ2
2

(E2 + c + d) . (2.15)

Closely related expressions for the SW-periods of elliptic curves appear in [14] and for more

general gauge groups in [27].

The weak-strong coupling duality element S : τ → − 1
τ

of N = 4 Super-Yang-Mills

theory is not trivially realized in pure N = 2 Seiberg-Witten theory. It relates the gauge

instanton expansion in the region of asymptotic freedom 1
u
, 1

a
→ 0 to the magnetic U(1)

which is weakly coupled at the magnetic monopole point z = (u − 1)/2, aD → 0. The

gauge coupling of the asymptotic free theory is determined by τ(a), while the one of the

magnetic U(1) is determined by τD(aD) with the relation

τD = −1

τ
(2.16)

We note that the one-loop amplitude (2.11) is S-duality invariant. The holomorphic

limit at the monopole points is taken by τ̄D → ∞. Therefore one has

FD(1)(aD) = − log(η(τD)) = −1

2
log

(

∂aD

∂u

)

− 1

12
log(u2 − 1)

=
log(2)

3
− i

6
π − log(ãD)

12
− ãD

25
− 3 ã2

D

29
− 19 ã3

D

2123
+ O(ãD)4

(2.17)

2Because of the volume of the diffeomorphism group generated by the Killing vector field on T 2 we need

regularization of an infinite constant in that limit. Only the immediately well-defined ∂τF (1) plays a rôle

in the following. To define that limit consider τ and τ̄ as independent variables.
3To keep the notation simpler we suppress normalization factors of 1

2πi
from the periods, which make

them an integral representation of (2.2).
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We derive, similar as (2.15) was obtained, from the first line of (2.17) a formula for the

second period

aD(τD) = − i

3θ2
4

(E2 − b − c) . (2.18)

This can then be inverted to obtain the series expansion in the second line of (2.17), where

we rescale

ãD := i
aD

2
. (2.19)

It is naturally to define an anholomorphic period

A(τ, τ̄ ) =
1

3θ2
2

(Ê2(τ, τ̄ ) + c + d), (2.20)

with the anholomorphic weight one form

Ê2(τ, τ̄ ) := E2(τ) +
6i

π(τ̄ − τ)
. (2.21)

Different then the Eisenstein series E4 and E6, holomorphic modular forms of weight 4 and

6 which generate the ring of holomorphic forms of Γ0, the holomorphic E2 transforms not

quite as modular form of weight 1, but rather quasi-modular under Γ0, i.e. with a shift

E2

(

aτ + b

cτ + d

)

= (cτ + d)2E2(τ) +
12

2πi
c(cτ + d) . (2.22)

However the anholomorphic piece in (2.20) cancels the shift so that Ê2(τ, τ̄ ) transforms as

a form of weight 2.

It follows from (2.20) that a(τ) = limτ̄→∞ A(τ, τ̄ ) and aD(τD) =

limτ̄D→∞
1

τD
A(− 1

τD
,− 1

τ̄D
). Moreover S-duality transformations (2.7) allow us to write a

and aD as functions of τ or τD. In particular we can integrate (2.15) w.r.t. aD in the

magnetic phase to obtain

FD(0) =
1

2
ã2

D log

(

− ãD

2

)

+ 4ãD − 3ãD
2

22
+

ã3
D

24
+

5 ã4
D

29
+

11 ã5
D

212
+ O(ã6

D) . (2.23)

2.2 Propagators and integrating the holomorphic anomaly equations

From the genus zero and genus one amplitude one can derive the propagator [1]. With the

simplification for local B-model explained in [26] we obtain

Saa = S =
2F

(1)
,1

F
(0)
,3

=
1

24

(

E2(τ) − 3

πτ2

)

=:
1

24
Ê2(τ, τ̄ ) , (2.24)

which in the holomorphic limit becomes

Saa = S =
2F (1)

,1

F (0)
,3

=
1

24
E2(τ) . (2.25)

This quantity contains the contribution from the boundaries of the WS moduli space in the

topological string theory. It is closely related to Tk,l the quantity that arises if one considers
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correlators of integrated two-form operators constructed from the descent equation in the

gauge theory on four manifolds. More precisely intersections of the corresponding 2-cycles

require contact terms which are Tk,l = Saiaj ∂uk

∂ai

∂ul

∂aj
, see [28].

Equations (2.14), (2.11), (2.24) define the data needed to recursively solve the B-model

recursively [1]. Using the fact that the formalism of integrating the holomorphic anomaly

equations commutes with the double scaling limit taken to obtain the gauge theory [20]

and power counting in the propagator in the Feynmann rules of [1] we obtain the following

general result

F (g)(τ, τ̄ ) = Xg−1

3(g−1)
∑

k=0

Êk
2 (τ, τ̄ )c

(g)
k (τ) . (2.26)

Here we defined X = b
1728c2d2 = 1

108(u2−1)2b3
, which transforms as a weight −6 object

X(aτ+b
cτ+d

) → 1
(cτ+d)6

X(τ) under Γ(2). F (g) is invariant under Γ(2), which implies that c
(g)
k

are homogeneous of weight 6(g − 1) − 2k in (b, c, d). Further conditions on c
(g)
k come from

regularity of F (g)(t, t̄) at u = 0 and a gap condition at the conifold u = 1 as dicussed below.

We obtain the holomorphic limits of the expansion in the asymptotic freedom and the

strong coupling region as

F (g)(a) = lim
τ̄→∞

F (g)(τ, τ̄ ), and FD(g)(aD) = lim
τ̄D→∞

F (g)

(

− 1

τD
,− 1

τ̄D

)

(2.27)

and the a or aD (ãD) expansion are obtained by inverting (2.15) or (2.18). We note that

the leading behavior of electric and magnetic expansion in these parameters is

F (g)(a) ∼ (−1)gB2g

g(2g − 2)(2a)2g−2
and FD(g)(aD) ∼ B2g

2g(2g − 2)ã2g−2
D

(2.28)

respectively. The first asymptotic behavior can be derived in the gauge theory limit of

type II theory on O(−2,−2) → P
1 × P

1. More precisely one uses in the Gopakumar-Vafa

expansion 1

(2 sin mλ
2 )

2 =
∑

g=0 λ2g−2(−1)(g−1) B2g

2g(2g−2)!m
2g−2 and the multiplicity n

(g)
m,0 =

δg,0δm,0 = −2 of BPS states corresponding to constant maps on one P
1 as well as properties

of the limit discussed in [20]. The derivation is similar as for the constant map contribution
∫

Mg
c3
g−1 =

|B2gB2g−2|
2g(2g−2)(2g−2)! in [38]. The asymptotic in the magnetic expansion comes from

the occurrence of the c = 1 string at the conifold [40].

We come now to the explicite iterative solutions in the genus. For example the recursive

definition of F (2) is

F (2)(τ, τ̄ ) =
1

2
SF

(1)
,2 +

1

2
S(F

(1)
,1 )2+

5

24
S3(F

(0)
,3 )2−1

8
S2F

(0)
,4 −1

2
S2F

(1)
,1 F

(0)
,3 +Xc

(2)
0 (u) , (2.29)

where c
(2)
0 (u) is the holomorphic ambiguity at genus two. This ambiguity must be invariant

under Γ(2), which implies that it can be written in terms of u. Moreover regularity of F (g)

at u → ∞ and the leading pole behavior at u → 1 implies that it is of the form

Xg−1c
(g)
0 (u) = u3−g

2g−2
∑

i=1

A
(g)
i

∆i(u)
. (2.30)
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Note that A
(g)
i are undetermined constants and the right hand is a rational function of the

Γ(2) invariant function u. Using (2.14), (2.11) and the standard formulas for the derivatives

of θi, E2 we may write (2.29) with h = (b + 2d) as

F (2)(τ, τ̄ ) =
X

3

(

5Ê3
2 − 9Ê2

2h + 6Ê2(b
2 + cd) − h(16b2 + 19cd)

10

)

, (2.31)

an almost holomorphic modular function of Γ(2). Here we determined the ambiguity as

follows. Using (2.27), (2.15) we can expand (2.31) in the electric and magnetic holomorphic

limits. With the leading behavior (2.28) we found A
(2)
1 = − 19

12960 and A
(2)
2 = − 2

405 . This

yields

F (2) = − 1

240 · 2 a2
− 11

218 a10
− 117

222 a14
− 171201

234 a18
+ O

(

1

a22

)

(2.32)

This series predicts all genus 2 instantons and checks with the coefficients that appear in

the literature [15, 8]. The expansion in aD is obtained from (2.31) using (2.27), (2.7), (2.18)

FD(2) = − 1

240 ã2
D

− ãD

213
− 13 ã2

D

216
− 129 ã3

D

2175
+ O(ã4

D) (2.33)

Solving the recursion for genus 3 yields [26]

F (3) = SF
(2)
,1 F

(1)
,1 − 1

2
S2F

(2)
,1 F

(0)
,3 +

1

2
SF

(2)
,2 +

1

6
S3(F

(1)
,1 )3F

(0)
,3 − 1

2
S2F

(1)
,2 (F

(1)
,1 )2

−1

2
S4(F

(1)
,1 )2(F

(0)
,3 )2 +

1

4
S3(F

(1)
,1 )2F

(0)
,4 + S3

2F
(1)
,2 F

(1)
,1 F

(0)
,3 − 1

2
S2F

(1)
,3 F

(1)
,1

−1

4
S2(F

(1)
,2 )2 +

5

8
S5F

(1)
,1 (F

(0)
,3 )3 − 2

3
S4F

(1)
,1 F

(0)
,4 F

(0)
,3 − 5

8
S4F

(1)
,2 (F

(0)
,3 )2

+
1

4
S3F

(1)
,2 F

(0)
,4 +

5

12
S3F

(1)
,3 F

(0)
,3 +

1

8
S3F

(0)
,5 F

(1)
,1 − 1

8
S2F

(1)
,4 − 7

48
S4F

(0)
,5 F

(0)
,3

+
25

48
S5F

(0)
,4 (F

(0)
,3 )2 − 5

16
S6(F

(0)
,3 )4 − 1

12
S4(F

(0)
,4 )2 +

1

48
S3F

(0)
,6 + X2c

(3)
0 (u) , (2.34)

and we determined the coefficients A
(3)
1 = 59

2449440 , A
(3)
2 = 14669

3265920 , A
(3)
3 = 4133

204120 and

A
(3)
4 = 5359

306180 . This yields the following almost complex modular expression for F (3)

F (3) = 4X2

(

5Ê6
2 − 25Ê5

2h + 40Ê4
2 (2b2 + 5cd) − 1

3
Ê3

2h(529b2 + 559cd) (2.35)

+
Ê2

2

5
(1172b4 + 4060b2cd + 1223(cd)2) − Ê2

5
h(844b4 + 1685b2cd + 310(cd)2)

+
1

210
(10718b6 + 49596b4cd + 44007b2(cd)2 + 944(cd)3)

)

,

from which the electric

F (3) =
1

1008 · 23

(

− 1

a4
+

441

212a12
+

18459

216a16
+

62106849

228a20
+

256368735

231a24
+ O

(

1

a28

))

(2.36)

and magnetic expansions

FD(3) =
1

1008

1

ã4
D

− 9 ãD

220
− 143 ã2

D

222
− 63827 ã3

D

2277
+ O(ã4

D) (2.37)
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follow from (2.27). The number of terms in the modular expressions of F (g) grow much

slower then the number of graphs in the holomorphic anomaly equation, because many

graph contributions are proportional to the same quasimodular form. For genus four,

where the holomorphic anomaly equation has 83 graphs we find

F (4) = 4X3

{

1150

9
Ê9

2 − 985Ê8
2h + 2Ê7

2(2399b2 + 7001cd) (2.38)

−14

3
Ê6

2h(3761b2 + 6125cd) +
3

5
Ê5

2(85863b4 + 363344b2cd + 240083(cd)2)

−1

5
Ê4

2h(604469b4 + 1677340b2cd + 547811(cd)2)

+
2

5
Ê3

2(531266b6 + 2793615b4cd + 3285123b2c2d2 + 447656(cd)3))

− 2

35
Ê2

2h(4430756b6 + 16550337b4cd + 11925927b2(cd)2 + 889964(cd)3)

+
1

175
Ê2(31232428b

8 + 195274840b6cd + 329613819b4(cd)2

+130729960b2(cd)3+3566728(cd)4)− 1

1575
h(87826748b8 +423770948b6cd

+511313601b4(cd)2 + 128098172b2(cd)3 + 4442006(cd)4)

}

with electric

F (4) = − 1

1440 · 25

(

1

a6
+

765

212a14
+

126195

216a18
+

1925006715

229a22
+

14420664765

232a26
+ O

(

1

a30

))

(2.39)

and magnetic expansion

FD(4) = − 1

1440ã6
D

+
1125 ãD

229
− 3915 ã2

D

228
+

4786021 ã3
D

235
+ O(ã4

D) (2.40)

We derived expressions for F (g) in terms of modular forms up to genus six and checked

the large a expansions against results made available to us by Nakajima.4 Let us report

here the dual expansions, which are interesting as they correspond to perturbations of the

c = 1 string at the selfdual radius by momentum operators

FD(5) =
1

1056 ã8
D

− 77175 ãD

236
− 100971 ã2

D

232
− 5142558213 ã3

D

24311
+ O(ã4

D) , (2.41)

FD(6) = − 691

327600 ã10
D

− 18753525ãD

244
− 16908525ã2

D

240
− 672990085791ã3

D

24913
+O(ã4

D) . (2.42)

2.3 Fixing the ambiguity

In (2.26) all c
(g)
k except for c

(g)
0 , the holomorphic ambiguity, are determined by the recursion

relations (2.29), (2.34) that follow from the holomorphic anomaly equation in terms of

lower genus F (g). Generally fixing the holomorphic ambiguity is a major problem in the

4These somewhat lengthy expressions are available on request.
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B-model, which however the case at hand is completely solvable. The discriminant locus of

the curve (2.3) is at u = ∞ and at u = ±1 where (2.3) develops a node. At all other points

in the moduli space of the Seiberg-Witten geometry F (g) must be regular. As follows from

the global properties of the θ functions and E2, regularity at u = 0 restricts the form of

c
(g)
k (τ) to

c
(g)
k = h

(1+(−1)g+k)
2 Pd(g,k)(b

2, cd), (2.43)

where Pd(g,k)(b
2, cd) is an homogeneous polynomial in b, c, d of degree

d(g, k) = 3(g − 1) − k − (1 + (−1)g+k)

2
, (2.44)

with d(g,k)
2 + 1 coefficients. In particular in the ambiguity c

(g)
0 the number of unknown

coefficients of this polynomial grows with ∼ 3
2g slower then the number of the A

(g)
i in (2.30),

which grows with ∼ 2g.

Moreover the leading terms in (2.33), (2.37), (2.40), (2.41), (2.42) correspond to cor-

relators of the cosmological constant operator of the c = 1 matrix model in the genus g

vacuum sector [40]. Very important is the occurrence of the gap in F (g)D , i.e. the absence

of terms 1
ãk

D

, k = 0, . . . , 2g − 3. The 2g − 2 gap conditions fix the A
(g)
i , i = 1, . . . , 2g − 2

constants and hence the ambiguity (2.30). Together with the anomaly equation this pro-

vides a very efficient way to solve the theory completely. The asymptotic (2.28) and the

particular form of (2.43) are further consistency constraints confirming the gap property.

A gap follows if there is a matrix model 1
N

expansion for the holomorphic topological string

at a critical point, as e.g. at the orbifold point in the local O(−2,−2) → P
1 × P

1 model

discussed [7]. In this case the measure integration yields at each genus the negative power

term in expansion parameter and the perturbative terms start with positive powers. This

particular behavior of the magnetic expansion of the N=2 pure SU(2) model at the conifold

is hence explainable by the proposed unitary matrix model [3]. As we saw above the model

is solved by the gap property and the holomorphic anomaly. If one would like to employ 1
N

techniques in order to determine the weak coupling instanton expansion one would have to

do exactly what we have done in (2.26) namely to write the result globally. More generally

the gap can be understood from the absence of correlators of the ground ring operators [30]

in the c = 1 string describing the limit of the topological string near the nodal singularity

(conifolds) of local models. Indeed we have checked that the gap occurs also at the conifold

in the local O(−3) → P
2 geometry and fixes the ambiguity of this model. How this extends

generally to singularities of local models and the modifications for singularities of global

models will be discussed in [51].

If we absorb X into genus expansion parameter λ in (2.26), then (2.1) becomes a sum of

a quasi-modular forms. The simplest example of such an expansion, where the coefficients

are however quasi modular forms of the full modular group Γ0 appears in Hurwitz theory

on T 2 [32]. As reviewed there this leads directly to combinatorial problem that is solved

by free fermions and Z = eF can be written in a product form that has been recognized

as a generalized θ-function product form in [33]. More examples of such product forms

are provided by vertex algebras [34, 35] and arise in heterotic type II duality [36 – 39]. It
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would be interesting to see whether the SW partition function is related to a generalized

Γ(2) theta function.

3. Dijkgraaf-Vafa conjecture

In [5], Dijkgraaf and Vafa proposed a remarkable relation between B-model topological

string on a non-compact Calabi-Yau geometry and a matrix model.

3.1 Dijkgraaf-Vafa transition and geometric engineering

The n cut matrix model is obtained by reducing holomorphic Chern-Simons theory on D5-

branes wrapping n P
1’s in a modification of the geometry O(−2) ⊕ O(0) → P

1. The k-th

P
1 is wrapped by Nk branes, k = 1, . . . , n. In the modified geometry the location of the

P
1’s in the originally flat O(0) x-direction is now fixed at the minima of a potential W (x)

of degree n + 1. e.g. the n = 1 geometry is the blown up conifold O(−1) ⊕ O(−1) → P
1.

The reduction yields a complex bosonic matrix model with the matrix potential5 W ′(x),

that needs as additional data the choice of contour for the eigenvalue integration [5].

The B-model geometry emerges after a transitions in which the n P
1’s are blown down

and deformed to S3’s. It has a local description as a hypersurface in C
4

vw = W ′(x)2 + f(x) + y2 (3.1)

where x, y, v, w are coordinates of C
4, f(x) is polynomial of degree n − 1 that splits the n

double zeros of W ′(x)2.

The latter geometry has been considered in [4] to geometrically engineer N = 1 four-

dimensional supersymmetric gauge theory. After the transition the breaking to N = 1

is achieved by putting Nk units of Ramond flux on the S3’s and the topological string

or the matrix model calculates terms in the N = 1 effective gauge theory. In [5] it is

already shown that the special geometry relation that determine the tree level (genus zero)

topological string amplitude F (0) on the geometry (3.1) arise from the planar diagrams

of the corresponding matrix model. The planar loop equation of the matrix model gives

the spectral curve of the local geometry and the effective superpotential in a large class

of N = 1 gauge theory can be computed exactly by the genus zero amplitude of matrix

model or topological string. It is conjectured that higher genus topological B-model string

amplitudes should also be computed by higher genus diagrams in the matrix model.

The meaning of the topological string amplitudes F (g>0)(Si) in the effective theory is

as follows. In N = 2 supergravity action they determine the exact moduli dependence of

the F -terms
∫

d4x

∫

d4θF (g)(Si)(WαβWαβ)g (3.2)

here Wαβ is the N = 2 graviphoton superfield and the Si are the N = 2 vector multi-

plets whose complex scalar field corresponds to the moduli of Calabi-Yau manifold. After

5Further generalization of this conjecture to the case of Calabi-Yau geometry with ADE type singularities

can also be made [3].
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integrating over the N = 2 superspace these terms become the coupling R2
+F 2g−2

+ of the

self-dual part of the Ricci tensor R+ to the selfdual part of the graviphoton field strength

F+.

After breaking of N = 2 to N = 1 by fluxes the topological string amplitudes

F (g>0)(Si) occur in the following two terms of the N = 1 action [41 – 43]

Γ1 = g

∫

d4x

∫

d2θWαβγWαβγ(FδξF
δξ)g−1F (g)(Si), (3.3)

Γ2 =

∫

d4x

∫

d2θ(FαβFαβ)gNi
∂F (g)(Si)

∂Si
. (3.4)

Here Wαβγ are now N = 1 gravitino multiplet, and Si are the N = 1 glueball chiral

superfields coming from the original N = 2 vector multiplets [41]. The graviphoton field

Fαβ can be treated as background field in the N = 1 theory. In [41] a C-deformation is

introduced to deform the anti-commutation relation of gluino ψα to the followings

{ψα, ψβ} = 2Fαβ (3.5)

It is shown that the effect of turning on the graviphoton background Fαβ can be captured

by this C-deformation, and the F (g) in the second contribution Γ2 (3.4) are computed by

matrix models at genus g. We can also see that the first term Γ1 in (3.3) contributes at genus

g = 1 even there is no graviphoton background Fαβ . It is shown in [42] that this genus one

contribution is also computed by matrix model genus one diagrams. There are also some

other types of gravitational corrections besides (3.3), (3.4) of the form WαβγW αβγSn from

planar diagrams, which become trivial after the extremization of the glue ball superfield

S [43]. Our results confirm these very interesting ideas in [41 – 43] by a first direct tests

of the connection between topological strings and matrix models at higher genus without

using the superspace techniques in the effective gauge theory.

3.2 The two cut geometry and the tree level and genus one amplitudes

We consider now the case of a cubic potential W (x) = m
2 x2 + g

3x3 in the Dijkgraaf-Vafa

geometry (3.1). The degree one polynomial f(x) = µ1x + µ0 splits the double zeros of

W ′(x)2 at x = a1 and x = a2 to the four roots a±1 , a±2 of the equation

W ′(x)2 + f(x) = 0 (3.6)

We adopt the notation of [8, 4], and change variable (a−1 , a+
1 , a−2 , a+

2 ) ≡ (x1, x2, x3, x4) →
(z1, z2, Q, I) where

z1 ≡ 1

4
(x2 − x1)

2, z2 ≡ 1

4
(x4 − x3)

2

Q ≡ 1

2
(x1 + x2 + x3 + x4) = −m

g

I ≡ 1

4
[(x3 + x4) − (x1 + x2)]

2 =

(

m

g

)2

− 2(z1 − z2) . (3.7)
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The local Calabi-Yau geometry (3.6) depends really only two complex structure deforma-

tions. We will use (z1, z2) or below the A-periods S1 and S2 to parameterize them. The

dependence of the genus zero super- and the higher genus potentials F (g) can be recon-

structed from scaling laws and dimensional considerations. In particular we frequently set

g,m = 1.

The fundamental periods of the local geometry are

Si =
1

2πi

∫ a+
i

a−

i

λ, Πi =
1

2πi

∫ Λ

a+
i

λ ,

where i = 1, 2 and λ = dx
√

W ′(x)2 + f(x) is a meromorphic differential which emerges

after integrating the holomorphic Calabi-Yau (3,0)-form over an S2 fibre direction of the

S3′s in (3.1) [4]. In [4] the integrals where further calculated perturbatively for small zi.

This limit corresponds to vanishing S3′s and is suitable for the perturbative matrix model

expansion. Solving the B-model and fixing its ambiguity requires a global understanding

of the complex moduli space in (z1, z2). We therefore derive the Picard-Fuchs equations

and use them to explore the global properties of the integrals Si and Πi.

We find that derivatives of λ w.r.t. zi up to second order multiplied with suitable

polynomials in zi combine to a total derivative, i.e. Liλ =
∑

k+l≤2 p(k,l)(z)∂k
z1

∂l
z2

λ =

dgi(x, z1, z2). Naively the differential ideal with this property is generated by three inde-

pendent differential operators Li. However dgi(x, z1, z2) is a meromorphic differential with

non-vanishing residua, hence one cannot conclude from the exactness that Li

∫

Γ λ = 0. For

the following two operators the residua vanish

L1 = 2z1(2z1 + 6z2 − 1)∂2
z1

+ (1 − 10z1 + 12z1
2 + 4z1z2)∂z1∂z2 + (3 − 2z1 − 6z2)∂z1

+(1 ↔ 2) (3.8)

L2 = (2z1 + 2z2 − 1)[−2z1(1 − 4(z1 + z2) + 5z1
2 − 2z1z2 − 3z2

2)∂2
z1

+ (z1 + z2)

(1 − 8z1 + 6z1
2 − 6z1z2)∂z1∂z2 ] + (z1(7 − 18z2 + 26z2

2 + 46z1
2 + z1(62z2 − 39))

−3z2(1 − 3z2 + 2z2
2)))∂z1 − 3(1 − 12z1 + 18z1

2 + 14z1z2) + (1 ↔ 2) . (3.9)

These Picard-Fuchs operators annihilate the periods and fix their expansion up to linear

combinations. The discriminant of these differential operators has the following components

C1 : z1 = 0, C2 : z2 = 0, I : I = 1 − 2z1 − 2z2 = 0,

J : J = (x1 − x2)(x2 − x3)(x2 − x4)(x1 − x4)

= (1 − 3z1)
2 − 6z2 + 9z2

2 + 14z1z2

= 0,

(3.10)

whose schematic intersection after a suitable desingularisation of three order tangencies is

depicted in figure 1.

According to the Dijkgraaf-Vafa correspondence the periods Si are identified with the

filling fractions Ni, with
∑n

i=1 Ni = N , of eigenvalues in the large N limit of the dual matrix

model, and it is shown that the special geometry relation and Picard-Fuchs equations are

reproduced in the planar limit of the matrix model [5] and the genus zero topological
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Figure 1: Divisors in the moduli space of B-model, (z1, z2) = (0, 0) is the matrix model expansion

point and along the dash line one has enhanced N = 2 SUSY.

string amplitude F (0) follows from integrating the special geometry relation ∂F (0)

∂Si
= Πi.

To analyze the exact effective superpotential Weff = 2πi
∑

i(NiΠi + αiSi), where Ni and

αi are 3-form flux quanta through the Ai and Bi cycles respectively, globally we need to

the periods throughout the complex moduli space. This is done in appendix A, where we

also find that there is no point where the periods degenerate with leading behavior that

is quadratically in the logarithms. The latter degeneration is typical for a large volume or

maximal unipotent point in the moduli space of local Calabi-Yau spaces.

Also at one loop the conjecture holds6 [8, 10]. The B-model expression for the one loop

free energy F (1) obtained by integrating (4.3) using (4.1) and fixing integration constants

it turns out to be [8]

F (1) =
1

2
log

(

det

(

∂zi

∂Sj

)

(z1z2)
− 1

6 IJ
2
3

)

, (3.11)

where we obtain the periods Si in terms of complex structure moduli zi and the corre-

sponding inverse series

S1(z1, z2, g) =
1

4
z1 −

g2

8
z1(2z1 + 3z2) −

g4

32
z1(4z

2
1 + 13z1z2 + 9z2

2) + O(g6)

S2(z1, z2, g) = −S1(z2, z1, g)

z1(S1, S2, g) = 4S1 + 8g2S1(2S1 − 3S2) + 8g4(20S2
1 − 67S1S2 + 39S2

2 ) + O(g6)

z2(S1, S2, g) = z1(−S2,−S1, g) (3.12)

from the two power series solutions to (3.9) at (z1, z2) = (0, 0). Identifying Si with the

filling fractions Ni we get the genus one contributions to (B.6). Note that the integration

constants ci in (z1z2)
c1Ic2Jc3, which fix the behavior of F (1) at the discriminant components

6The one loop-test in [10] and the higher loops tests [8] are made at the N = 2 point S1 = −S2.
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are global data do not depend on the base point (z1, z2) = (0, 0) or the holomorphic limit

S̄ı̄ → 0 taken at this base point to obtain the matrix model expansion. The coefficient

c1 = −1
6 at the conifold (shrinking S3) is a universal property of the topological B-model.

To solve the B-model recursion we need the genus zero three point functions, which

are rational functions in complex structure moduli.

Cz1z1z1 =
1 − (6z1 + 5z2)g

2 + 3(3z2
1 + 3z1z2 + 2z2

2)g4

16g4z1I2
, Cz1z1z2 =

1 − (3z1 + 5z2)g
2

16g2I2
.

(3.13)

The three point functions Czizjzk
are symmetric in ijk and from symmetry consideration

follows Cz2z2z2 = Cz1z1z1(z1 ↔ z2) as well as Cz2z1z1 = Cz1z1z1(z1 ↔ z2).

The corresponding matrix model is a Hermitian matrix model with the cubic potential

W (Φ) = 1
2Φ2 + g

3Φ3 for a rank N Hermitian matrix Φ. The partition function and free

energy F of the model are

Z = eF =
1

V ol(U(N))

∫

DΦ e−W (Φ) (3.14)

In the large N limit the eigenvalues distribute around the two critical points 0 and

−1
g

of the potential and form two cuts. We consider the metastable vacuum where with

N1 eigenvalues at 0 and N2 eigenvalues at −1
g
. This is a two-cut solution of the matrix

model with N1 and N2 fixed and subject to the condition N1 + N2 = N . In the large

N limit the free energy of the matrix model has genus expansion in 1/N2, and at each

genus there is a perturbative expansion by the t’Hooft coupling constant gN . Dijkgraaf

and Vafa conjecture that the free energy of the matrix model at each genus is matched to

the topological string amplitudes on the local Calabi-Yau geometry (3.1), by identifying of

the periods Si in the geometry with the eigenvalue filling fractions Ni. In appendix B we

review more details of the matrix model calculations of the free energy.

4. The holomorphic anomaly equations

The key to the solution of the topological B-model are the holomorphic anomaly equations.

To solve them recursively one needs in general to derive three types of propagators Sij, Siφ

and Sφφ [1]. In local geometries Siφ and Sφφ can be gauged to zero [26] and the derivation

of the propagators in the multimoduli case is discussed in [1, 38, 44].

4.1 The holomorphic anomaly recursions

The geometry on the complex structure moduli space zi of Calabi-Yau is a special Kahler

geometry. Its metric, connection and curvature are determined by the Kahler potential

K by the well-known formula, Gij̄ = ∂i∂̄j̄K, Γi
lm = −Gik̄∂lGk̄m and Rk

ij̄l
= −∂̄j̄Γ

k
il.

They have a well-known special geometry relation with the three point Yukawa coupling

Cijk = DiDjDkF
(0), which comes from the tt∗ equation [45] and can be thought of as the

holomorphic anomaly equation at genus zero

Rk
ij̄l

= Gij̄δ
k
l + Gkj̄δ

k
i − CilmC̄km

j̄
(4.1)
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At genus one and higher genus the topological string amplitudes has a holomorphic

anomaly, and the anti-holomorphic dependence of the genus g free energy is related to

lower genus free energy by the holomorphic anomaly equation [1]

∂i∂̄j̄F
(1) =

1

2
CiklC̄

kl
̄ −

(

χ

24
− 1

)

Gij̄ (4.2)

∂̄īF
(g) =

1

2
C̄jk

ı̄

(

DjDkF
(g−1) +

g−1
∑

r=1

DjF
(r)DkF

(g−r)

)

g ≥ 2 . (4.3)

Here the C̄jk
ı̄ = e2KC̄ı̄̄k̄G

̄jGk̄k define the propagators Sij as ∂̄īS
jk = C̄jk

ī
. The holo-

morphic equation can be integrated and represented as graphic Feynman rules to give the

higher genus free energy in terms of lower genus up to a holomorphic ambiguity. The

propagators can be solved by integrating its defining relation and use the special geometry

relation (4.1). One finds

SijCjkl = δi
l∂kK + δi

k∂lK + Γi
kl + f i

kl (4.4)

here f i
kl are ambiguous integration constants, and they are meromorphic rational functions

of the complex structure moduli zi with poles at discriminant points of the moduli space.

Suppose there are n complex structure moduli, then there are 1
2n2(n + 1) equations for

1
2n(n+1) propagators Sij. In the case of one modulus, the number of equations and prop-

agators are the same, so the meromorphic functions f i
jk can be just set to zero. However,

in the multi-moduli case we consider, the equations over determine the propagators, so we

have to choose the ambiguity f i
jk properly to satisfy some constrains and ensure we can

solve for the propagators.

There are certain simplification in B-model calculations for the case of non-compact

local Calabi-Yau manifold. In this case there is a choice of gauge such that the Kahler

potential K and metric over the moduli space GSkS̄j̄
in the Si coordinates is a constant

in holomorphic limit, and the dilaton component in the propagators vanish. So in the

holomorphic limit S̄ī → 0 the connection vanishes and covariant derivative in the Si co-

ordinates is just ordinary derivative. This also makes the topological string amplitudes

entirely independent of quantities such as Euler number, Chern classes of the Calabi-Yau,

which will need to be regularized in the non-compact case. In this case, the metric and the

connection in the zi coordinates are

Gziz̄j̄
=

∂Sk

∂zi
Ckj̄

Γzi
zjzk

= − ∂zi

∂Sl

∂2Sl

∂zj∂zk

(4.5)

where Ckj̄ are constant in the holomorphic limit.

4.2 Propagators and Dijkgraaf-Vafa conjecture at higher genus

The geometry we consider has two complex structure moduli. In order to solve the propa-

gators, the holomorphic ambiguity f i
jk have to satisfy 3 constrain equations by eliminating
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propagators Sij in (4.4). These constrains equations are rational functions of the complex

structure moduli zi,
7 and we are able to find a rational solution for the f i

jk

f1
11 = −

[

6 − (49z1 + 48z2)g
2 + (163z2

1 + 219z1z2 + 126z2
2 )g4 (4.6)

+(210z3
1 + 304z2

1z2 + 242z1z
2
2 + 108z3

2)g6)
]

/(20g6z1I
2J)

f1
12 = −

[

29 − (79z1 + 157z2)g
2 + (10z2

1 + 260z1z2 + 210z2
2)g4]/(20g4I2J) (4.7)

f1
22 =

[

7 − (55z1 + 68z2)g
2 + (142z2

1 + 315z1z2 + 219z2
2)g4

−(120z3
1 + 338z2

1z2 + 492z1z
2
2 + 234z3

2)g6
]

/(20g6z2I
2J).

By definition f i
jk = fkj and the (z1 ↔ z2) symmetry determines the other f i

jk, e.g.

f2
22 = f1

11(z1 ↔ z2) e.t.c. Note that the discriminant factors in (3.10) should be the

only singularities appearing in the denominator for the ansatz of holomorphic ambiguities

and in fact all appear.

The holomorphic anomaly equation at genus one can be integrated to give the Ray-

Singer torsion of the target manifold. The genus one free energy can also be expressed in

terms of genus zero three point functions and the propagators as follows

∂iF
(1) =

1

2
SjkCijk + ∂i

∑

r

ar log(∆r) (4.8)

here ar are constants and ∆r are various discriminants of the local geometry. The holo-

morphic ambiguity f i
jk should give a solution of the propagators Sij that satisfies the above

consistency check (4.8). We have chosen our ansatz of the holomorphic ambiguity (4.6)

that satisfies the (4.8) with the constants a1 = 1/15, a2 = 2/15

∂iF
(1) =

1

2
SjkCijk + ∂i

(

1

15
log(z1z2) +

2

15
log(∆2)

)

(4.9)

This choice of ansatz is convenient in the sense that it leads to the correct leading behavior

in genus two, so it is easier for us to fix the genus two holomorphic ambiguity there.

In local geometry the genus two topological free energy can be integrated from the

holomorphic anomaly equation. It is

F (2) = − 1

8
SijSklF

(0)
ijkl +

1

2
SijF

(1)
ij − 1

2
SijSklF

(1)
i F

(0)
jkl +

1

2
SijF

(1)
i F

(1)
j (4.10)

+
1

12
SijSklSmnF

(0)
ikmF

(0)
jln +

1

8
SijSklSmnF

(0)
ijk F

(0)
lmn + f (2)

We fix the genus two holomorphic ambiguity f (2) with some initial data from matrix model

calculations

f (2) = −
[

1253−10503(z1 +z2)g
2+27(1081z2

1 +950z1z2+1081z2
2 )g4 (4.11)

−26865(z1 + z2)(z1 − z2)
2g6

]

/(9000g4z1z2J
2),

7We note that while genus zero three point functions are rational functions of the complex structure

moduli zi, the connections Γi
jk are generally not rational functions. They combine to give rise to rational

equations for holomorphic ambiguity f i
jk.
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Once the holomorphic ambiguity is fixed, we can compute the genus two free energy to

very high order using (4.10). The topological string approach is much more advantageous

than direct matrix model calculations where it is hard to compute to free energy at higher

orders (see appendix B for more details). After some extensive computer running time,

we are able to make many checks of the topological string predictions (4.12) below for the

genus two free energy.

F (2) = − 1

240

(

1

N1
2 +

1

N2
2

)

+

(

35

6
N1 −

35

6
N2

)

g6

+(338N1
2 − 1632N1N2 + 338N2

2)g8 +

(

66132

5
N1

3 − 120880N1
2N2 + · · ·

)

g10

+

(

1305280

3
N1

4 − 18059582

3
N1

3N2 + 11824166N1
2N2

2 − · · ·
)

g12

+

(

12963696N1
5 − 244438427N1

4N2 + 745362156N1
3N2

2 − · · ·
)

g14

+

(

362264064N1
6 − 35002369227

4
N1

5N2 +
148144671957

4
N1

4N2
2

−57597548553N1
3N2

3 + · · ·
)

g16

+

(

29035470208

3
N1

7 − 862430780350

3
N1

6N2 + 1580964252892N1
5N2

2

−10256675032550

3
N1

4N2
3 + · · ·

)

g18

+

(

1250634104832

5
N1

8 − 44363662176978

5
N1

7N2 +
303466060570354

5
N1

6N2
2

−854152004682126

5
N1

5N2
3 + 237637137780236N1

4N2
4 − · · ·

)

g20 (4.12)

The main difficulty in the B-model calculations is to fix the holomorphic ambiguities at

each genus. Also the Feynman rules that solve the holomorphic equations quickly become

very complicated. Here we push the calculations only to genus two in our calculations,

since there are less new conceptual issues beyond that.

5. Conclusion

The B-model iteration in the genus bears some resemblance to the procedure compute

higher genus free energy and resolvent of the matrix models for one-cut solution in [12] and

generalized to multi-cut solution in [13, 48, 49], where the iteration equation is obtained by

doing 1/N expansion in the loop equations, and looks similar to the holomorphic anomaly

equation in topological strings.

From the hermitian matrix model point of view the anti-holomorphicity is very un-

natural. The holomorphic anomaly equations were re-interpreted in [2] as infinitesimal

manifestation of the fact that the topological string partition function transforms as a

wave function under change of polarization in the middle cohomology of the target space.
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Using this picture the failure of holomorphicity can be traded against a failure of modularity

with a similar iteration [50], which makes the connection more naturally.

It would be very interesting to compare this latter iteration with the iterations [48, 49]

in detail, since this can in principle fix the holomorphic ambiguity in B-model calcula-

tions. Fixing the holomorphic ambiguity systematically is one of the main difficulties for

topological string calculations in many other models. We hope further studies will clarify

these issues and provide valuable lessons in fixing holomorphic ambiguity in more general

models.
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A. Moduli space and monodromy of the two cut matrix model

A.1 Compactification of the moduli space and local expansions

The aim of this section is to obtain the periods everywhere in the moduli space and to

determine the monodromies. For the compactification of the moduli space we use the

projective space CP
2 with homogeneous coordinates (z̃1, z̃2, z̃3) and identify the z̃3 6= 0

patch with

z1 =
z̃1

z̃3
, z2 =

z̃2

z̃3
. (A.1)

In addition to the divisors listed in (3.10) we get now a CP
1 divisor at infinity, at which

the periods turn out to be non-singular. We calculated the local expansion near all nor-

mal crossing divisors and determined the local monodromy. By analytic continuation we

determined the global mondromy. One remarkable aspect of the geometry is that there

is no point in the moduli space where at least one of the periods degenerates with dou-

ble logarithm, which would correspond to the normal large complex structure point of a

local geometry at which the mirror expansion in the large Kähler coordinates leads to a

convergent instanton sum.

Suppose we expand the Picard-Fuchs equation around a common point of two singular

divisors ∆1(z1, z2) = 0 and ∆2(z1, z2) = 0. In order to find complete solutions of the

Picard-Fuchs equation, one must choose a good local coordinate around these singular

points. The technique for choosing good local coordinates is quite standard in algebraic

geometry. For our two parameter model, there are two possible cases:

• det(∂∆i

∂zj
) 6= 0, then the point ∆1(z1, z2) = ∆2(z1, z2) = 0 is called the point of normal

intersection of divisor ∆1 = 0 and ∆2 = 0. In this case a choice of good local

coordinates is simply (∆1,∆2).
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• det(∂∆i

∂zj
) = 0, then this is called a point of tangency of divisor ∆1 = 0 and ∆2 = 0. In

this case one will not be able to find all solutions around the point of tangency with

the choice of local coordinates (∆1,∆2). We will encounter a very common situation

in which the divisors have the following form

∆1 = a2 + bc

∆2 = b (A.2)

here a, b and c are degree one polynomial of complex structure moduli z1 and z2. The

standard technique in algebraic geometry is to introduce two exceptional divisors to

resolve the point of tangency. It turns out that a choice of good local coordinate in

this case is (a, b
a2 ). In our analysis we will follow the standard procedure and use this

good local coordinates.

We list the asymptotic solutions of Picard-Fuchs equations and their monodromy at

various singular points of the divisors (3.10) in the moduli space. Some of the singular

points can be obtained by exchanging z1 and z2, and we only list once these symmetric

singular points.

(i) C1 ∩ C2. his is the matrix model point we have tested Dijkgraaf-Vafa conjecture at

higher genus. Th good choice of local coordinates is simply (z1, z2). For completeness

we list the periods

f1 =
z1

4
− 1

8
z1(2z1 + 3z2) + · · ·

f2 = −z2

4
+

1

8
z2(3z1 + 2z2) + · · ·

f3 = f1 log(z1) +
1

12
+

z1

8
− 1

16
(−4z2

1 + z1z2 + 5z2
2) + · · ·

f4 = f2 log(z2) −
1

12
− z2

8
− 1

16
(5z2

1 + z1z2 − 4z2
2) + · · · (A.3)

(ii) C1 ∩ I. The intersection point is at (z1, z2) = (0, 1
2), and the choice of good local

coordinates is (x1, x2) = (z1, 1− 2z1 − 2z2). The asymptotic solutions for periods are

f1 =
√

x2(1 − 4x1 − x2)

f2 =
√

x2

(

x1 +
x2

12
−

(

2x2
1 −

5

3
x1x2 −

x2
2

8

)

+ · · ·
)

f3 = x1

(

1 − 5

4
x1 −

3

2
x2 + · · ·

)

f4 = f3 log(x1) +
2

3
+ x2 +

(

7

8
x2

1 − 3x1x2 −
13

12
x2

2

)

+ · · · (A.4)

(iii) C1 ∩ J . This is a point of tangency of the two divisors at (z1, z2) = (0, 1
3). The

singular factor J can be written as

J = 1 − 6z1 − 6z2 + 9z2
1 + 14z1z2 + 9z2

2 = 9

(

z2 −
1

3

)2

+ z1(−6 + 14z2 + 9z1) (A.5)
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Following our discussion above we see a good choice coordinates is (x1, x2) =

( z1

(z2− 1
3
)2

, 1
3 − z2). This is the local coordinates around the intersection of the blow up

divisor with the divisor C1. The asymptotic expansion for the periods are

f1 = x1x
5
2
2

(

1 − 1

216
x1 −

23

72
x1x2 −

5

46656
x2

2 + · · ·
)

f2 = x2
2

(

1 +
4

9
x1 + 4x2 + · · ·

)

f3 = 1 + 81x3
2 − 108x1x

3
2 −

729

8
x4

2 + · · ·

f4 = f1 log(x1) + x
5
2
2

(

36

5
− 108

7
x2 + · · ·

)

(A.6)

We can also solve the Picard-Fuchs equations with the local coordinates around the

intersection of the blow up divisor with the singular divisor J . This will be useful

later on when we try to match the basis and derive the monodromy of the divisor J .

The good choice of local coordinates around this point is

x1 =
z1(6 − 14z2 − 9z1)

9(z2 − 1
3)2

− 1,

x2 =
1

3
− z2 (A.7)

We find the asymptotic expansion for the periods with this coordinates

f1 = x2
1x

5
2
2

(

1 − 5

16
x1 +

33

8
x2 + · · ·

)

f2 = x2
2

(

1 +
3

4
x1 −

43

2
x2 + · · ·

)

f3 = 1 − 648x3
2 + · · ·

f4 = f1 log(x1) + x
5
2
2

(

512

15
+ 32x1 −

3008

7
x2 + · · ·

)

(A.8)

(iv) I ∩ J . This is a point of tangency between the divisors at (z1, z2) = (1
4 , 1

4). We write

the singular factor J as

J = (z1 − z2)
2 + (1 − 2z1 − 2z2)(1 − 4z1 − 4z2) (A.9)

A good choice of local coordinates is (x1, x2) = ((z1−z2)
2, 1−2z2−2z2

(z1−z2)2
). The asymptotic

solutions for the periods are

f1 = x1

(

1 +
3

8
x1 + x2 +

35

64
x2

1 +
1

4
x1x2 + · · ·

)

f2 = x1
√

x2

f3 = f1 log(x1) +
4

3
+

23

16
x2

1 + 3x1x2 + · · ·

f4 = f2 log(x1) + x1x
3
2
2

(

1

3
+

1

30
x2 + · · ·

)

(A.10)
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(v) C1 ∩ C∞. In the homogeneous coordinate (z̃1, z̃2, z̃3) the divisor C1 is z̃1 = 0, so the

good local coordinates is (x1, x2) = (z̃1, z̃3). Since at the intersection z̃2 6= 0, we can

choose z̃2 = 1 and use the relation (A.1) to find (x1, x2) = (z1
z2

, 1
z2

). The asymptotic

solutions for the periods are

f1 = x1x
− 3

2
2

(

1 − 23

72
x1 −

1

6
x2 + · · ·

)

f2 = x
− 3

2
2

(

1 − 1

4
x2 −

67

144
x2

1 +
7

24
x1x2 −

1

32
x2

2 + · · ·
)

f3 = f1 log(x1) + x
− 3

2
2

(

x2 −
65

144
x2

1 +
1

2
x1x2 −

1

8
x2

2 + · · ·
)

f4 = (f1 − 2f2) log(x2) + x
− 3

2
2

(

2

3
x2 −

211

108
x2

1 +
25

18
x1x2 −

1

6
x2

2 + · · ·
)

(vi) I∩C∞. In the homogeneous coordinates z̃1, z̃2 and z̃3, the divisor I is z̃3−2z̃1−2z̃2 =

0. At the intersection with I ∩ C∞ the coordinate z̃2 6= 0, we can choose z̃2 = 1 and

use the relation (A.1) to find the good local coordinates

(x1, x2) = (z̃3 − 2z̃1 − 2z̃2, z̃3) (A.11)

=

(

1 − 2z1 − 2z2

z2
,

1

z2

)

The asymptotic solutions for the periods are

f1 =
√

x1x
− 3

2
2

(

1 +
x1 − x2

4

)

f2 = x
− 3

2
2

(

1 +
3

4
x1 −

5

64
x2

1 +
3

32
x1x2 −

3

64
x2

2 + · · ·
)

f3 = x
− 3

2
2 (x1 + x2)

(

1 +
x1 − x2

8
+ · · ·

)

f4 = f1 log(x2) +
√

x1x
− 3

2
2

(

− 1

4
x1 +

1

4
x2 +

13

480
x2

1 +
1

48
x1x2 −

1

32
x2

2 + · · ·
)

(vii) J ∩C∞. In the homogeneous coordinates z̃1, z̃2 and z̃3, the divisor J is z̃2
3 − 6z̃1z̃3 −

6z̃2z̃3+9z̃2
1 +14z̃1z̃2+9z̃2

2 = 0. At the intersection with J∩C∞ the coordinate z̃2 6= 0,

we can choose z̃2 = 1 and use the relation (A.1) to find the good local coordinates

(x1, x2) = (z̃2
3 − 6z̃1z̃3 − 6z̃2z̃3 + 9z̃2

1 + 14z̃1z̃2 + 9z̃2
2 , z̃3)

=

(

1 − 6z1 − 6z2 + 9z2
1 + 14z1z2 + 9z2

2

z2
2

,
1

z2

)

(A.12)
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The asymptotic solutions for the periods are

f1 = x2
1x

− 3
2

2

(

1 +
103 −

√
2i

576
x1 +

8 +
√

2i

16
x2 + · · ·

)

f2 = x
− 3

2
2

(

1 +
−5 −

√
2i

64
x1 +

−5 −
√

2i

16
x2 + · · ·

)

f3 =

(

f1 −
8192(43 + 13

√
2i)

2187
f2

)

log(x2)

+x
− 3

2
2

(

− 256(7 + 4
√

2i)

243
x1 −

1024(2 + 5
√

2i)

81
x2 + · · ·

)

f4 = f1 log x1 + x
− 3

2
2

(

512(23 − 10
√

2i)

81
x2 + · · ·

)

(A.13)

A.2 Analytic continuation

The periods of a Calabi-Yau manifold are integrals of the holomorphic three-form over the

three-cycles. In the case of the Dijkgraaf-Vafa model, the integrals of the holomorphic

three-form over the symplectic three-cycles reduce to integrals of a differential one-form

over its branch cuts on the complex plane. For convenience we consider the cubic potential

W (x) = 1
2x2 + 1

3x3 with the cubic coupling g set to one. The A-cycle periods and B-cycle

periods are 8

S1 =
1

2πi

∫ x4

x3

dx
√

(x − x1)(x − x2)(x − x3)(x − x4)

S2 = − 1

2πi

∫ x2

x1

dx
√

(x − x1)(x − x2)(x − x3)(x − x4)

Π1 =
1

2πi

∫ Λ0

x3

dx
√

(x − x1)(x − x2)(x − x3)(x − x4)

Π2 =
1

2πi

∫ Λ0

x2

dx
√

(x − x1)(x − x2)(x − x3)(x − x4) (A.14)

The asymptotic expansion of the periods around the origin (z1, z2) = (0, 0) was con-

sidered in [4]. Around this point the roots satisfy x1 < x2 < x3 < x4 and the cuts between

x1, x2 and between x3, x4 shrink to zero sizes. It was found there that the asymptotic

expansions of the periods are

S1 =
z1

4
− 1

8
z1(2z1 + 3z2) + · · ·

S2 = −z2

4
+

1

8
z2(3z1 + 2z2) + · · ·

2πiΠ1 =
Λ3

0

3
+

Λ2
0

2
+ S1 log

(

z1

4

)

− z1

4
− (S1 + S2) log(Λ2

0) + · · ·

2πiΠ2 =
Λ3

0

3
+

Λ2
0

2
− 1

6
+ S2 log

(

z2

4

)

+
z2

4
− (S1 + S2) log(Λ2

0) + · · · (A.15)

8The periods are determined only up to a sign ambiguity due to the square root factors in the formula.

Here we have taken the proper signs to match the convention of [4].
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The Picard-Fuchs equations we derived can determine the constant term in the B-cycle

periods Πi and the cut-off parameter is fixed to be Λ0 = −1
2 . We can find the monodromy

matrices around this point zi → zie
2πi

Mz1 =











1 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1











, Mz2 =











1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1











(A.16)

Since the integrals are done over symplectic cycles, the monodromy matrices are elements

of the symplectic group Sp(4,Z) and satisfy the van Kampen relation Mz1Mz2 = Mz2Mz1 .

Now we want to analytically continue the periods to other points in the complex

structure moduli space. The analytic continuation will fix the symplectic basis of periods,

which is not available by solving the Picard-Fuchs equation around these points. In order

to do the analytic continuation, we must do the integrals in (A.14) exactly. The A-cycle

periods Si and the difference between the two B-cycle periods Π1 − Π2 can be written in

terms of complete elliptic integrals of the first, second and third kinds, and one of the

B-cycle periods involves incomplete elliptic integrals.

We consider analytically continue the periods (A.14) to a singular point (z1, z2) = (0, 1
3)

in the moduli space. This is the closest singular point to (z1, z2) = (0, 0) in the moduli

space. We will use the local coordinate (z̃1, z̃2) around the intersection of the blow up

divisor F1 : 1
3 − z2 = 0 and divisor C1 : z1 = 0 as we did for solving the Picard-Fuchs

equation

z̃1 =
z1

(z2 − 1
3)2

z̃2 =
1

3
− z2 (A.17)

We directly compute the asymptotic expansion of one B-cycle period Π2 and use the asymp-

totic expansion formulae of the complete elliptic integrals in [46] to obtain the asymptotic

formulae for other periods.

For convenience we define a function in terms of complete elliptic integrals of the first

kind K(k2), the second kind E(k2) and the third kind Π(a2, k2) as the following

P (a2, k2) =
1

48a4(1 − a2)2(a2 − k2)2
× {a2[3a8 + 3k4 − 4a6(1 + k2) − 4a2k2(1 + k2)

+2a4(2 + k2 + 2k4)]E(k2) + [−3a10 − 3k6 + a8(4 + 5k2)

+a4k2(4 − 10k2) − 2a6(2 + k4) + 3a2k4(1 + 2k2)]K(k2)

+3[−a12 − 5a8k2 + 5a4k4 + k6 + 2a10(1 + k2)

−2a2k4(1 + k2)]Π(a2, k2)} (A.18)

We start from the original matrix model point (z1, z2) = (0, 0) in the complex structure

moduli space where x1 < x2 < x3 < x4. The expressions for the A-cycle periods can be
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found using formulae in [46]. After some algebra we found

S1 =
1

2π

∫ x4

x3

dx
√

(x4 − x)(x − x3)(x − x2)(x − x1)

=
1

2π

2(x4 − x3)(x2 − x4)(x4 − x1)
2

√

(x4 − x2)(x3 − x1)
P

(

x3 − x4

x3 − x1
,
(x4 − x3)(x2 − x1)

(x4 − x2)(x3 − x1)

)

S2 =
1

2π

∫ x2

x1

dx
√

(x4 − x)(x3 − x)(x2 − x)(x − x1)

=
1

2π

2(x4 − x2)(x2 − x1)(x3 − x2)
2

√

(x4 − x2)(x3 − x1)
P

(

x2 − x1

x3 − x1
,
(x4 − x3)(x2 − x1)

(x4 − x2)(x3 − x1)

)

(A.19)

and the difference between the two B-cycle periods is

2πi(Π2 − Π1) =

∫ x3

x2

dx
√

(x4 − x)(x3 − x)(x − x2)(x − x1) (A.20)

=
2(x4 − x2)(x3 − x2)(x2 − x1)

2

√

(x4 − x2)(x3 − x1)
P

(

x3 − x2

x3 − x1
,
(x3 − x2)(x4 − x1)

(x4 − x2)(x3 − x1)

)

We will take these exact formulae at the matrix model point and analytically continue to

the local coordinate (A.17).

We can also directly compute the asymptotic expansion one of B-cycle periods Π2

around (z̃1, z̃2) = (0, 0) as follows

2πiΠ2 =

∫ Λ0+ 1
2
− I

2

q

1
3
−z̃2−I

dx

√

(

(x + I)2 − 1

3
+ z̃2

)

(x2 − z̃1z̃
2
2) (A.21)

=

∫ Λ0+ 1
2
− I

2

q

1
3
−z̃2−I

dx

√

(

(x + I)2 − 1

3
+ z̃2

)(

x − z̃1z̃
2
2

2x
− (z̃1z̃

2
2)2

8x3
+ O(z̃4)

)

where I =
√

1
3 − 2z̃1z̃2

2 + 2z̃2. We can compute the integrals exactly for the first few leading

terms written above, and expand around the cut off Λ0 = ∞ keeping only positive powers

of Λ0.

We can now use the expressions for the periods (A.19), (A.20), (A.21) and obtain the

asymptotic expansions to a first few orders

S1 =

√
3

4
f1

S2 = −
√

3

4
f1 +

3
√

3

8
f2 −

1

12
√

3
f3

Π1 = Π2 +
1

2πi

√
3

4
(f4 + (3 − log(2433))f1)

2πiΠ2 =
Λ3

0

3
+

Λ2
0

2
− 1

12
+

√
3

108
f3 − (S1 + S2) log(12Λ2

0) (A.22)
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where f1, f2, f3, f4 are the asymptotic expansion of the solutions for Picard-Fuchs equation

we found earlier

f1 = z̃1z̃
5
2
2

(

1 − 1

216
z̃1 −

23

72
z̃1z̃2 −

5

46656
z̃2
2 + · · ·

)

f2 = z̃2
2

(

1 +
4

9
z̃1 + 4z̃2 + · · ·

)

f3 = 1 + 81z̃3
2 − 108z̃1z̃

3
2 − 729

8
z̃4
2 + · · ·

f4 = f1 log(z̃1) + z̃
5
2
2

(

36

5
− 108

7
z̃2 + · · ·

)

(A.23)

These asymptotic expressions of periods are linear combinations of the 4 solutions to

the Picard-Fuchs equations we found earlier, provided we choose the cut-off constant to be

Λ0 = −1
2 . Thus we have found the canonical basis for the symplectic cycles. It is easy to

write down the monodromy matrices around this point

Mz̃1 =











1 0 0 0

0 1 0 0

1 0 1 0

0 0 0 1











, MF1 =











−1 0 0 0

2 1 0 0

0 0 −1 2

0 0 0 1











(A.24)

The monodromy around the singular divisor C1 is the same as before Mz̃1 = Mz1. We can

also see that the monodromy matrices are elements of Sp(4,Z) group and satisfy the van

Kampen relation Mz̃1MF1 = MF1Mz̃1 .

In general it is not easy to do the analytic continuation of periods. We use a numerical

method to match the basis of solutions of Picard-Fuchs equation at different points of the

moduli space. We consider the intersection of the singular divisor J and the blow up divisor

F1 : 1
3 − z2 = 0. The local coordinate and the solutions for the Picard-Fuchs equation are

z̃1 =
z1(6 − 14z2 − 9z1)

9(z2 − 1
3)2

− 1,

z̃2 =
1

3
− z2 (A.25)

f1 = z̃2
1 z̃

5
2
2

(

1 − 5

16
z̃1 +

33

8
z̃2 + · · ·

)

f2 = z̃2
2

(

1 +
3

4
z̃1 −

43

2
z̃2 + · · ·

)

f3 = 1 − 648z̃3
2 + · · ·

f4 = f1 log(z̃1) + z̃
5
2
2

(

512

15
+ 32z̃1 −

3008

7
z̃2 + · · ·

)

(A.26)

Using numerical method we find the canonical basis of the periods as the following

S1 = (−0.14 − 0.26i)f1 + 0.082f4

S2 = (0.14 + 0.26i)f1 + 2.6f2 − 0.048f3 − 0.082f4

Π1 = −0.26if1 + 1.03if2 − 0.016f3

Π2 = 1.03if2 − 0.016if3 (A.27)
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The monodromy matrix of the divisor F1 is the same as we have derived in (A.24). We

can now write down the monodromy matrix of the singular divisor J by looking at the

transformation around z̃1 → z̃1e
2πi

MJ =











1 0 −2 2

0 1 2 −2

0 0 1 0

0 0 0 1











, (A.28)

For the singular divisor I : 1 − 2z1 − 2z2 = 0, we find essential singularities instead of

simple singularities. This can be seen from the asymptotic behavior of the solutions of the

Picard-Fuchs equation at any point in the divisor. We find that the radius of convergence

for the asymptotic expansion is zero, i.e. the series is always divergent. This is an interesting

new feature of the Dijkgraaf-Vafa model.

B. Matrix model calculations

In this appendix we give some details of the matrix model calculations following the ap-

proach in [8, 7]. The cubic matrix model can be expressed in the eigenvalues of the matrix

W (Φ) = tr

(

Φ2

2
+

gΦ3

3

)

=
N

∑

i=1

(

λ2
i

2
+

gλ3
i

3

)

(B.1)

Then the partition functions Z and free energy F are

Z = eF =
1

V ol(U(N))

∫

DΦ e−W (Φ) =
1

N !(2π)N

∫

∏

i

dλi∆
2(λ)e−

PN
i=1(

λ2
i
2

+
gλ3

i
3

) (B.2)

where ∆(λ) =
∏

i<j(λi−λj) is the standard Vandermonde determinant from the measure of

the matrix. We expand N1 eigenvalues around the critical points a1 = 0 and N2 = N −N1

eigenvalues around the critical points a2 = −1
g
. Suppose the fluctuation is µi, νi

λi = µi, i = 1, 2, · · ·N1

λi+N1 = −1

g
+ νi i = 1, 2, · · ·N2 (B.3)

Then the potential and the Vandermonde determinant become

W (Φ) =

N1
∑

i=1

(

µi

2
+

gµ3

3

)

−
N2
∑

i=1

(

ν2
i

2
− gν3

i

3

)

+ N2W

(

− 1

g

)

(B.4)

∆2(λ) =
∏

1≤i1<i2≤N1

(µi1 − µi2)
2

∏

1≤j1<j2≤N2

(νj1 − νj2)
2

∏

1≤i≤N1

∏

1≤j≤N2

(

µi−νj+
1

g

)2

(B.5)

Now we can treat the expansion around this vacuum as a model with two matrices Φ1 with

eigenvalues µi and Φ2 with eigenvalues νi. The interaction terms
∏

1≤i≤N1

∏

1≤j≤N2
(µi −

νj + 1
g
)2 in the Vandermonde determinant can be exponentiated and written as potential

– 27 –
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for the two matrices, then the partition functions can be straightforwardly evaluated by ex-

panding the potential and computing the expectations values of Gaussian matrix model [7].

We note the fluctuation around unstable critical point −1
g

has a wrong sign kinetic term

−ν2
i

2 . However this model is perturbatively well defined if we treat Φ1 as a Hermitian

matrix and analytically continue Φ2 to be a anti-Hermitian matrix. Alternatively, one can

also determine the perturbative part of the free energy by directly evaluating the Gaussian

integral for various values of N1 and N2 and solving for the coefficients in the perturbation

series. Using this method we are able to push the computations of the free energy to the

eighth order, and provide many checks of the topological string calculations in (4.12). The

perturbative part of the free energy is the followings

Fpert = −N2W (a2) − 2N1N2 log(g)

+

[(

2

3
N1

3 − 5N1
2N2 + 5N1N2

2 − 2

3
N2

3

)

+

(

N1

6
− N2

6

)]

g2

+

[(

8

3
N1

4 − 91

3
N1

3N2 + 59N1
2N2

2 − 91

3
N1N2

3 +
8

3
N2

4

)

+

(

7

3
N1

2 − 31

3
N1N2 +

7

3
N2

2

)]

g4

+

[(

56

3
N1

5 − 871

3
N1

4N2 +
2636

3
N1

3N2
2 − 2636

3
N1

2N2
3 +

871

3
N1N2

4 − 56

3
N2

5

)

+

(

332

9
N1

3 − 923

3
N1

2N2 +
923

3
N1N2

2 − 332

9
N2

3

)

+

(

35

6
N1 −

35

6
N2

)]

g6

+

[(

512

3
N1

6 − 6823

2
N1

5N2 +
28765

2
N1

4N2
2 − 67310

3
N1

3N2
3 ± · · ·

)

+

(

1864

3
N1

4 − 47083

6
N1

3N2 + 15349N1
2N2

2 ∓ · · ·
)

+

(

338N1
2 − 1632N1N2 + 338N2

2

)]

g8

+

[(

9152

5
N1

7 − 45118N1
6N2 + 247980N1

5N2
2 − 540378N1

4N2
3 ± · · ·

)

+

(

54416

5
N1

5 − 187528N1
4N2 + 570066N1

3N2
2 ∓ · · ·

)

+

(

66132

5
N1

3 − 120880N1
2N2 ± · · ·

)

+

(

5005

3
N1 −

5005

3
N2

)]

g10

+

[(

65536

3
N1

8 − 1933906

3
N1

7N2 +
13258178

3
N1

6N2
2

−37761034

3
N1

5N2
3 +

52780010

3
N1

4N2
4 ∓ · · ·

)

(

1762048

9
N1

6− 12980560

3
N1

5N2+
54863776

3
N1

4N2
2− 256344964

9
N1

3N2
3 ± · · ·

)

(

1305280

3
N1

4 − 18059582

3
N1

3N2 + 11824166N1
2N2

2 ∓ · · ·
)
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(

1680704

9
N1

2 − 8748896

9
N1N2 +

1680704

9
N2

2

)]

g12

+

[(

5912192

21
N1

9 − 68087967

7
N1

8N2 +
564130824

7
N1

7N2
2

−286953520N1
6N2

3 + 524636640N1
5N2

4 ∓ · · ·
)

(

25136768

7
N1

7−97692942N1
6N2+537372540N1

5N2
2−1166263112N1

4N2
3 ± · · ·

)

(

12963696N1
5 − 244438427N1

4N2 + 745362156N1
3N2

2 ∓ · · ·
)

(

86388296

7
N1

3 − 855302550

7
N1

2N2 ± · · ·
)

+

(

8083075

6
N1 −

8083075

6
N2

)]

g14

+

[(

11534336

3
N1

10− 1834216417

12
N1

9N2+
5978643549

4
N1

8N2
2−6444922816N1

7N2
3

+14743157646N1
6N2

4 − 19289163957N1
5N2

5 ± · · ·
)

(

66841600N1
8 − 4347551555

2
N1

7N2 +
29785674795

2
N1

6N2
2

−42151343305N1
5N2

3 + 58765399140N1
4N2

4 ∓ · · ·
)

(

362264064N1
6 − 35002369227

4
N1

5N2 +
148144671957

4
N1

4N2
2

−57597548553N1
3N2

3 ± · · ·
)

(

1882324352

3
N1

4 − 28221164683

3
N1

3N2 + 18539047948N1
2N2

2 ∓ · · ·
)

(

693764720

3
N1

2 − 3860943680

3
N1N2 +

693764720

3
N2

2

)]

g16 (B.6)

This model also contains a non-perturbative part of free energy defined as the volume

factor of the U(N) gauge group as in [47], where it was computed with the following result

Fn.p. =
N2

1

2
log(N1) +

N2
2

2
log(N2) −

3

4
(N2

1 + N2
2 ) − 1

12
log(N1N2)

+2ζ ′(−1) +

∞
∑

g=2

B2g

4g(g − 1)

(

1

N2g−2
1

+
1

N2g−2
2

)

(B.7)

This non-perturbative part of the matrix model has the correct universal leading behavior

of Calabi-Yau near the conifold point of its moduli space, as first pointed out in [6] in the

context of c = 1 string compactified at self-dual radius.
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[27] L. Alvarez-Gaumé, M. Mariño and F. Zamora, Softly broken N = 2 QCD with massive quark

hypermultiplets. I, Int. J. Mod. Phys. A 13 (1998) 403 [hep-th/9703072].

[28] M. Mariño, The uses of Whitham hierarchies, Prog. Theor. Phys. Suppl. 135 (1999) 29

[hep-th/9905053].

[29] M. Matone, Instantons and recursion relations in N = 2 SUSY gauge theory, Phys. Lett. B

357 (1995) 342 [hep-th/9506102]; Koebe 1/4 theorem and inequalities in N = 2 superQCD,

Phys. Rev. D 53 (1996) 7354 [hep-th/9506181].

[30] E. Witten, Ground ring of two-dimensional string theory, Nucl. Phys. B 373 (1992) 187

[hep-th/9108004].

[31] R. Dijkgraaf and C. Vafa, A perturbative window into non-perturbative physics,

hep-th/0208048.

[32] R. Dijkgraaf, Mirror symmetry and elliptic curves, in The moduli space of curves, Progr.

Math. 129, Birkhäuser (1995).
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